
PQCRYPTO

Post-Quantum Cryptography for Long-Term Security

Project number: Horizon 2020 ICT-645622

Small Devices: D1.6 Final Implementations

Due date of deliverable: 28. February 2018
Actual submission date: April 16, 2018

Start date of project: 1. March 2015 Duration: 3 years

Coordinator:
Technische Universiteit Eindhoven
Email: coordinator@pqcrypto.eu.org
www.pqcrypto.eu.org

Revision 1

Project co-funded by the European Commission within Horizon 2020
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission services)
RE Restricted to a group specified by the consortium (including the Commission services)
CO Confidential, only for members of the consortium (including the Commission services)

Small Devices: D1.6 Final Implementations

Tim Güneysu, Tobias Oder, Joost Rijneveld, Peter Schwabe, Ko Stoffelen

April 16, 2018
Revision 1

The work described in this report has in part been supported by the Commission of the European
Communities through the Horizon 2020 program under project number 645622 PQCRYPTO. The information
in this document is provided as is, and no warranty is given or implied that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability.

Abstract

This document provides the PQCRYPTO project’s final implementations with documentation
of build and testing environment, and extensive benchmark results.

Keywords: Post-quantum cryptography, small devices, software implementations, hardware
implementations, public-key encryption, public-key signatures, secret-key encryption, secret-key
authentication

ii

iii

Contents

1 Introduction 1

2 pqm4 1
2.1 Introduction . 1
2.2 Schemes included in pqm4 . 2
2.3 Setup/Installation . 2

2.3.1 Installing the ARM toolchain . 2
2.3.2 Installing stlink . 3
2.3.3 Installing pyserial . 3
2.3.4 Connecting the board to the host . 3
2.3.5 Downloading pqm4 and libopencm3 . 3

2.4 API documentation . 4
2.5 Running tests and benchmarks . 4
2.6 Benchmarks . 5

2.6.1 Speed Evaluation . 6
2.6.2 Stack Usage . 7

2.7 Adding new schemes and implementations . 7
2.7.1 Using optimized FIPS202 (Keccak, SHA3, SHAKE) 9

2.8 License . 10

3 pqhw 10
3.1 Introduction . 10
3.2 Schemes included in pqhw . 11
3.3 Setup/Installation . 11
3.4 Running tests and benchmarks . 11
3.5 Benchmarks . 11
3.6 License . 12

iv

— Small Devices: D1.6 Final Implementations 1

1 Introduction

This document describes the final optimized software and hardware implementations of the
PQCRYPTO project. The actual code is hosted on GitHub in two repositories:

• https://github.com/mupq/pqm4 containing the pqm4 post-quantum crypto software
library for the ARM Cortex-M4 microcontroller, and

• https://github.com/mupq/pqhw containing the pqhw post-quantum crypto hardware
library for Xilinx FPGAs.

The actual implementation deliverables are

• the master branch in version e477e9f956d0511e8053d36bbd8db29c9483df5d of pqm4
and

• the master branch in version dc7075ac183b05d343a70c1209ee975bfb4e6279 of pqhw.

In this document we provide the documentation for these implementations, together with
extensive benchmarking results. This documentation is (aside from minor modifications for
formatting) the documentation also provided in the respective GitHub repositories. Section
2 provides documentation and results of pqm4 and Section 3 provides documentation and
results of pqhw.

2 pqm4

Post-quantum crypto library for the ARM Cortex-M4.

2.1 Introduction

The pqm4 library, benchmarking and testing framework is a result of the PQCRYPTO
project funded by the European Commission in the H2020 program.
It currently contains implementations of 8 post-quantum key-encapsulation mechanisms
and 2 post-quantum signature schemes targeting the ARM Cortex-M4 family of microcontrollers.
The design goals of the library are to offer

• a simple build system that generates an individual static library
for each implementation of each scheme, which can simply be linked into
any software project;

• automated functional testing on a widely available development board;
• automated generation of test vectors and comparison against output

of a reference implementation running host-side (i.e., on the computer the
development board is connected to);

• automated benchmarking for speed and stack usage; and
• easy integration of new schemes and implementations into the framework.

https://github.com/mupq/pqm4
https://github.com/mupq/pqhw
https://pqcrypto.eu.org

2 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.2 Schemes included in pqm4

Currently pqm4 contains implementations of the following post-quantum KEMs:

• FrodoKEM-640-cSHAKE
• KINDI-256-3-4-2
• Kyber-768
• NewHope-1024-CCA-KEM
• NTRU-HRSS-KEM-701
• Saber
• SIKE-p571
• Streamlined NTRU Prime 4591761

Currently pqm4 contains implementations of the following post-quantum signature schemes:

• Dilithium-III
• SPHINCS+-SHAKE256-128s

The schemes were selected according to the following criteria:

• Restrict to NIST round 1 candidates.
• Restrict to schemes and implementations resulting from the PQCRYPTO project.
• Choose parameters targeting NIST security level 3 by default, but
• choose parameters targeting a higher security level if there are no level-3 parameters, and
• choose parameters targeting a lower security level if level-3 parameters exceed the

development board’s resources (in particular RAM).
• Restrict to schemes that have at least implementation of one parameter set that does

not exceed the development board’s resources.

For most of the schemes there are multiple implementations.
The naming scheme for these implementations is as follows:

• ref: the reference implementation submitted to NIST,
• opt: an optimized implementation in plain C (e.g., the optimized implementation

submitted to NIST),
• m4: an implementation with Cortex-M4 specific optimizations (typically in assembly).

2.3 Setup/Installation

The testing and benchmarking framework of pqm4 targets the
STM32F4 Discovery board
featuring an ARM Cortex-M4 CPU, 1MB of Flash, and 192KB of RAM.
Connecting the development to the host computer requires a
mini-USB cable and a USB-TTL converter together with a 2-pin dupont / jumper cable.

2.3.1 Installing the ARM toolchain

The pqm4 build system assumes that you have the arm-none-eabi toolchain
toolchain installed.

https://frodokem.org/
http://kindi-kem.de/
https://pq-crystals.org/kyber/
https://newhopecrypto.org
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SABER.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://ntruprime.cr.yp.to/
https://pq-crystals.org/dilithium/
https://sphincs.org
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://pqcrypto.eu.org
http://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://launchpad.net/gcc-arm-embedded

— Small Devices: D1.6 Final Implementations 3

On most Linux systems, the correct toolchain gets installed when you install the
arm-none-eabi-gcc (or gcc-arm-none-eabi) package.
On Linux Mint, be sure to explicitly install libnewlib-arm-none-eabi as well (to fix an error
relating to stdint.h).

2.3.2 Installing stlink

To flash binaries onto the development board, pqm4 is using stlink.
Depending on your operating system, stlink may be available in your package manager – if
not, please
refer to the stlink Github page for instructions on how to compile it from source
(in that case, be careful to use libusb-1.0.0-dev, not libusb-0.1).

2.3.3 Installing pyserial

The host-side Python code requires the pyserial module.
Your package repository might offer python-serial or python-pyserial directly
(as of writing, this is the case for Ubuntu, Debian and Arch).
Alternatively, this can be easily installed from PyPA by calling pip install -r
requirements.txt
(or pip3, depending on your system).
If you do not have pip installed yet, you can typically find it as python3-pip using your
package manager.

2.3.4 Connecting the board to the host

Connect the board to your host machine using the mini-USB port.
This provides it with power, and allows you to flash binaries onto the board.
It should show up in lsusb as STMicroelectronics ST-LINK/V2.

If you are using a UART-USB connector that has a PL2303 chip on board (which appears to
be the most common),
the driver should be loaded in your kernel by default. If it is not, it is typically called pl2303.
On macOS, you will still need to install it (and reboot).
When you plug in the device, it should show up as Prolific Technology, Inc. PL2303
Serial Port when you type lsusb.

Using dupont / jumper cables, connect the TX/TXD pin of the USB connector to the PA3 pin
on the board, and connect RX/RXD to PA2.
Depending on your setup, you may also want to connect the GND pins.

2.3.5 Downloading pqm4 and libopencm3

Finally, obtain the pqm4 library and the submodule libopencm3:

https://github.com/texane/stlink
https://github.com/texane/stlink/blob/master/doc/compiling.md
https://github.com/pyserial/pyserial
http://www.prolific.com.tw/US/ShowProduct.aspx?p_id=229&pcid=41

4 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

git clone https://github.com/mupq/pqm4.git
cd pqm4
git submodule init
git submodule update

2.4 API documentation

The pqm4 library uses the NIST API. It is mandated for all included schemes.

KEMs need to define CRYPTO_SECRETKEYBYTES, CRYPTO_PUBLICKEYBYTES, CRYPTO_BYTES, and
CRYPTO_CIPHERTEXTBYTES and implement

int crypto_kem_keypair(unsigned char *pk,
unsigned char *sk);

int crypto_kem_enc(unsigned char *ct,
unsigned char *ss,
const unsigned char *pk);

int crypto_kem_dec(unsigned char *ss,
const unsigned char *ct,
const unsigned char *sk);

Signature schemes need to define CRYPTO_SECRETKEYBYTES, CRYPTO_PUBLICKEYBYTES, and
CRYPTO_BYTES and implement

int crypto_sign_keypair(unsigned char *pk,
unsigned char *sk);

int crypto_sign(unsigned char *sm, unsigned long long *smlen,
const unsigned char *msg, unsigned long long len,
const unsigned char *sk);

int crypto_sign_open(unsigned char *m, unsigned long long *mlen,
const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk);

2.5 Running tests and benchmarks

Executing make compiles five binaries for each implemenation which can be used to test and
benchmark the schemes. For example, for the reference implementation of NewHope-1024-
CCA-KEM the following binaries are assembled:

• bin/crypto_kem_newhope1024cca_ref_test.bin tests if the scheme works as expected.
For KEMs this tests if Alice and Bob derive the same shared key and for signature
schemes it tests if a generated signature can be verified correctly. Several failure cases
are also checked, see crypto_kem/test.c and crypto_sign/test.c for details.

• bin/crypto_kem_newhope1024cca_ref_speed.binmeasures the runtime of crypto_kem_keypair,
crypto_kem_enc, and crypto_kem_dec for KEMs and crypto_sign_keypair,
crypto_sign, and crypto_sign_open for signatures. See crypto_kem/speed.c and

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/example-files/api-notes.pdf
https://newhopecrypto.org
https://newhopecrypto.org
https://github.com/mupq/pqm4/blob/master/crypto_kem/test.c
https://github.com/mupq/pqm4/blob/master/crypto_sign/test.c
https://github.com/mupq/pqm4/blob/master/crypto_kem/speed.c

— Small Devices: D1.6 Final Implementations 5

crypto_sign/speed.c.

• bin/crypto_kem_newhope1024cca_ref_stack.bin measures the stack consumption of
each of the procedures involved. The memory allocated outside of the procedures (e.g.,
public keys, private keys, ciphertexts, signatures) is not included. See crypto_kem/stack.c
and crypto_sign/stack.c.

• bin/crypto_kem_newhope1024cca_ref_testvectors.bin uses a deterministic random
number generator to generate testvectors for the implementation. These can be used to
cross-check different implemenatations of the same scheme. See crypto_kem/testvectors.c
and crypto_sign/testvectors.c.

• bin-host/crypto_kem_newhope1024cca_ref_testvectors uses the same deter-
ministic random number generator to create the testvectors on your host. See
crypto_kem/testvectors-host.c and crypto_sign/testvectors-host.c.

The binaries can be flashed to your board using st-flash, e.g., st-flash write
bin/crypto_kem_newhope1024cca_ref_test.bin 0x8000000. To receive the output, run
python3 hostside/host_unidirectional.py.

The pqm4 framework automates testing and benchmarking for all schemes using Python3
scripts:

• python3 test.py: flashes all test binaries to the boards and checks that no errors occur.
• python3 testvectors.py: flashes all testvector binaries to the boards and writes the

testvectors to testvectors/. Additionally, it executes the reference implementations on
your host machine. Afterwards, it checks the testvectors of different implementations of
the same scheme for consistency.

• python3 benchmarks.py: flashes the stack and speed binaries and writes the results
to benchmarks/stack/ and benchmarks/speed/. You may want to execute this several
times for certain schemes for which the execution time varies significantly.

In case you don’t want to include all schemes, pass a list of schemes you want to include to
any of the scripts, e.g., python3 test.py newhope1024cca sphincs-shake256-128s.

The benchmark results (in benchmarks/) created by
python3 benchmarks.py can be automatically converted to the markdown table below using
python3 benchmarks_to_md.py

2.6 Benchmarks

The tables below list cycle counts and stack usage of the implementations currently included
in pqm4.
All cycle counts were obtained at 24MHz to avoid wait cycles due to the speed of the memory
controller.

https://github.com/mupq/pqm4/blob/master/crypto_sign/speed.c
https://github.com/mupq/pqm4/blob/master/crypto_kem/stack.c
https://github.com/mupq/pqm4/blob/master/crypto_sign/stack.c
https://github.com/mupq/pqm4/blob/master/crypto_kem/testvectors.c
https://github.com/mupq/pqm4/blob/master/crypto_sign/testvectors.c
https://github.com/mupq/pqm4/blob/master/crypto_kem/testvectors-host.c
https://github.com/mupq/pqm4/blob/master/crypto_sign/testvectors-host.c

6 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.6.1 Speed Evaluation

2.6.1.1 Key Encapsulation Schemes

scheme impl.
key generation
[cycles]

encapsulation
[cycles]

decapsulation
[cycles]

frodo640-cshake
(10 executions)

opt AVG: 94,191,951
MIN: 94,191,921
MAX: 94,192,027

AVG: 111,688,861
MIN: 111,688,796
MAX: 111,688,895

AVG: 112,156,317
MIN: 112,156,264
MAX: 112,156,389

kindi256342 (10
executions)

ref AVG: 22,940,741
MIN: 22,928,176
MAX: 22,947,668

AVG: 29,659,234
MIN: 29,645,532
MAX: 29,674,037

AVG: 37,821,962
MIN: 37,805,302
MAX: 37,840,627

kyber768 (10
executions)

m4 AVG: 1,200,351
MIN: 1,199,831
MAX: 1,200,671

AVG: 1,497,789
MIN: 1,497,296
MAX: 1,498,094

AVG: 1,526,564
MIN: 1,526,070
MAX: 1,526,868

kyber768 (10
executions)

ref AVG: 1,379,979
MIN: 1,379,339
MAX: 1,380,339

AVG: 1,797,604
MIN: 1,796,996
MAX: 1,797,947

AVG: 1,950,350
MIN: 1,949,742
MAX: 1,950,693

newhope1024cca
(10 executions)

ref AVG: 1,502,435
MIN: 1,502,179
MAX: 1,502,707

AVG: 2,370,157
MIN: 2,369,901
MAX: 2,370,429

AVG: 2,517,215
MIN: 2,516,959
MAX: 2,517,488

newhope1024cca
(9 executions)

m4 AVG: 1,246,626
MIN: 1,246,404
MAX: 1,246,772

AVG: 1,966,358
MIN: 1,966,137
MAX: 1,966,505

AVG: 1,977,753
MIN: 1,977,532
MAX: 1,977,899

ntruhrss701 (10
executions)

ref AVG: 197,262,297
MIN: 197,261,894
MAX: 197,262,845

AVG: 5,166,153
MIN: 5,166,153
MAX: 5,166,155

AVG: 15,069,480
MIN: 15,069,478
MAX: 15,069,485

saber (10
executions)

ref AVG: 7,122,695
MIN: 7,122,695
MAX: 7,122,695

AVG: 9,470,634
MIN: 9,470,634
MAX: 9,470,634

AVG: 12,303,775
MIN: 12,303,775
MAX: 12,303,775

sikep751 (1
executions)

ref AVG: 3,508,587,555
MIN: 3,508,587,555
MAX:
3,508,587,555

AVG: 5,685,591,898
MIN: 5,685,591,898
MAX:
5,685,591,898

AVG: 6,109,763,845
MIN: 6,109,763,845
MAX:
6,109,763,845

sntrup4591761
(10 executions)

ref AVG: 147,543,618
MIN: 147,543,618
MAX: 147,543,618

AVG: 10,631,675
MIN: 10,631,675
MAX: 10,631,675

AVG: 30,641,200
MIN: 30,641,200
MAX: 30,641,200

2.6.1.2 Signature Schemes

scheme impl.
key generation
[cycles]

encapsulation
[cycles]

decapsulation
[cycles]

dilithium (100
executions)

ref AVG: 2,888,788
MIN: 2,887,878
MAX: 2,889,666

AVG: 17,318,678
MIN: 5,395,144
MAX: 58,367,745

AVG: 3,225,821
MIN: 3,225,481
MAX: 3,226,288

— Small Devices: D1.6 Final Implementations 7

scheme impl.
key generation
[cycles]

encapsulation
[cycles]

decapsulation
[cycles]

sphincs-
shake256-128s (1
executions)

ref AVG: 4,433,268,654
MIN: 4,433,268,654
MAX:
4,433,268,654

AVG:
61,562,227,280
MIN:
61,562,227,280
MAX:
61,562,227,280

AVG: 70,943,476
MIN: 70,943,476
MAX: 70,943,476

2.6.2 Stack Usage

2.6.2.1 Key Encapsulation Schemes

scheme impl.
key generation
[bytes]

encapsulation
[bytes]

decapsulation
[bytes]

frodo640-cshake opt 36,536 58,328 68,680
kindi256342 ref 10,632 10,736 16,912
kyber768 m4 10,304 13,464 14,624
kyber768 ref 10,304 13,464 14,624
newhope1024cca m4 11,160 17,456 19,656
newhope1024cca ref 11,160 17,456 19,656
ntruhrss701 ref 10,024 8,996 10,244
saber ref 12,616 14,888 15,984
sikep751 ref 11,128 11,672 12,224
sntrup4591761 ref 14,648 10,824 16,176

2.6.2.2 Signature Schemes

scheme impl.
key generation
[bytes]

encapsulation
[bytes]

decapsulation
[bytes]

dilithium ref 51,372 87,544 55,752
sphincs-shake256-128s ref 2,904 3,032 10,768

2.7 Adding new schemes and implementations

The pqm4 build system is designed to make it very easy to add new schemes
and implementations, if these implementations follow the NIST/SUPERCOP API.
In the following we consider the example of adding the reference implementation
of NewHope-512-CPA-KEM to pqm4:

1. Create a subdirectory for the new scheme under crypto_kem/; in the following we assume
that this subdirectory is called newhope512cpa.

https://newhopecrypto.org

8 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2. Create a subdirectory ref under crypto_kem/newhope512cpa/.

3. Copy all files of the reference implementation into this new subdirectory,
except for the file implementing the randombytes function (typically PQCgenKAT_kem.c).

4. In the subdirectory crypto_kem/newhope512cpa/ref/ write a Makefile with default
target libpqm4.a.
For our example, this Makefile could look as follows:

CC = arm-none-eabi-gcc
CFLAGS = -Wall -Wextra -O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16
AR = arm-none-eabi-gcc-ar

OBJECTS= cpapke.o kem.o ntt.o poly.o precomp.o reduce.o verify.o
HEADERS= api.h cpapke.h ntt.h params.h poly.h reduce.h verify.h

libpqm4.a: $(OBJECTS)
$(AR) rcs $@ $(OBJECTS)

%.o: %.c $(HEADERS)
$(CC) -I$(INCPATH) $(CFLAGS) -c -o $@ $<

Note that this setup easily allows each implementation of each scheme to be built with
different compiler flags. Also note the -I$(INCPATH) flag. The variable $(INCPATH)
is provided externally from the pqm4 build system and provides access to header files
defining the randombytes function and FIPS202 (Keccak) functions (see below).

1. If the implementation added is a pure C implementation that can also run on the host,
then add an additional target called libpqhost.a to the Makefile, for example as follows:

CC_HOST = gcc
CFLAGS_HOST = -Wall -Wextra -O3
AR_HOST = gcc-ar
OBJECTS_HOST = $(patsubst %.o,%_host.o,$(OBJECTS))

libpqhost.a: $(OBJECTS_HOST)
$(AR_HOST) rcs $@ $(OBJECTS_HOST)

%_host.o: %.c $(HEADERS)
$(CC_HOST) -I$(INCPATH) $(CFLAGS_HOST) -c -o $@ $<

2. For some schemes you may have a reference implementation that exceeds the resource
limits
of the STM32F4 Discovery board. This reference implementation is still useful for pqm4,
because it can run on the host to generate test vectors for comparison.
If the implementation you’re adding is such a host-side-only reference implementation,
place
a file called .m4ignore in the subdirectory containing the implementation.
In that case the Makefile is not required to contain the libpqm4 target.

— Small Devices: D1.6 Final Implementations 9

The procedure for adding a signature scheme is the same, except that it starts with creating a
new subdirectory under crypto_sign/.

2.7.1 Using optimized FIPS202 (Keccak, SHA3, SHAKE)

Many schemes submitted to NIST use SHA-3, SHAKE or cSHAKE for hashing.
This is why pqm4 comes with highly optimized Keccak code that is accessible
from all KEM and signature implementations.
Functions from the FIPS202 standard (and related publication SP 800-185) are defined in
common/fips202.h as follows:

void shake128_absorb(uint64_t *state,
const unsigned char *input, unsigned int inlen);

void shake128_squeezeblocks(unsigned char *output, unsigned long long nblocks,
uint64_t *state);

void shake128(unsigned char *output, unsigned long long outlen,
const unsigned char *input, unsigned long long inlen);

void cshake128_simple_absorb(uint64_t *state,
uint16_t cstm,
const unsigned char *in, unsigned long long inlen);

void cshake128_simple_squeezeblocks(unsigned char *output, unsigned long long nblocks,
uint64_t *state);

void cshake128_simple(unsigned char *output, unsigned long long outlen,
uint16_t cstm,
const unsigned char *in, unsigned long long inlen);

void shake256_absorb(uint64_t *state,
const unsigned char *input, unsigned int inlen);

void shake256_squeezeblocks(unsigned char *output, unsigned long long nblocks,
uint64_t *state);

void shake256(unsigned char *output,
unsigned long long outlen,
const unsigned char *input,
unsigned long long inlen);

void cshake256_simple_absorb(uint64_t *state,
uint16_t cstm,
const unsigned char *in, unsigned long long inlen);

void cshake256_simple_squeezeblocks(unsigned char *output, unsigned long long nblocks,
uint64_t *state);

void cshake256_simple(unsigned char *output, unsigned long long outlen,
uint16_t cstm,
const unsigned char *in, unsigned long long inlen);

void sha3_256(unsigned char *output,

10 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

const unsigned char *input, unsigned long long inlen);
void sha3_512(unsigned char *output,

const unsigned char *input, unsigned long long inlen);

Implementations that want to make use of these optimized routines simply include
fips202.h. The API for sha3_256 and sha3_512 follows the
SUPERCOP hash API.
The API for shake256 and shake512 is very similar, except that it supports variable-length
output.
The SHAKE and cSHAKE functions are also accessible via the absorb-squeezeblocks functions,
which offer incremental
output generation (but not incremental input handling).

2.8 License

Different parts of pqm4 have different licenses. Specifically,

• all files under common/ are in the public domain;
• all files under hostside/ are in the public domain;
• all files under crypto_kem/kyber768/ are in the public domain;
• all files under crypto_kem/newhope1024cca/ are in the public domain;
• all files under crypto_kem/ntruhrss701/ are in the public domain;
• all files under crypto_sign/dilithium/ are in the public domain;
• all files under crypto_sign/sphincs-shake256-128s/ are in the public domain;
• the files speed.c, stack.c, test.c, testvectors.c, testvectors-host.c in
crypto_kem/ are in the public domain;

• the files speed.c, stack.c, test.c, testvectors.c, and testvectors-host.c in
crypto_sign/ are in the public domain

• the files benchmarks.py, benchmarks_to_md.py, Makefile, README.md, test.py,
testvectors.py, and utils.py
are in the public domain; and

• the files under crypto_kem/sikep751/ are under MIT License.
• the files under crypto_kem/frodo640-cshake/ are under MIT License.
• the files under the submodule directory libopencm3/ are under LGPL3
• all files under crypto_kem/sntrup4591761/ are in the public domain;

3 pqhw

Post-quantum crypto implementations for the FPGAs

3.1 Introduction

The pqhw implementations are a result of the PQCRYPTO project funded by the European
Commission in the H2020 program. Note that these are research oriented implementations and
not ready for productive use. It is published under the license contained in the license.rtf file

http://bench.cr.yp.to/call-hash.html
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Microsoft/PQCrypto-SIKE/master/LICENSE
https://raw.githubusercontent.com/Microsoft/PQCrypto-LWEKE/master/LICENSE
https://raw.githubusercontent.com/libopencm3/libopencm3/master/COPYING.LGPL3
http://creativecommons.org/publicdomain/zero/1.0/
https://pqcrypto.eu.org

— Small Devices: D1.6 Final Implementations 11

and allows evaluation by academics but no commercial use. Please contact the authors if you
intend to use this implementation for other purposes than academic evaluation and verification
of our results. The implementations are distributed in the hope that they will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

3.2 Schemes included in pqhw

Currently pqhw contains implementations of the following post-quantum NIST PQC candi-
dates:

• NewHope-1024

Currently pqhw contains implementations of the following post-quantum schemes that are
not NIST PQC candidates:

• BLISS

3.3 Setup/Installation

• NewHope was tested with Vivado v2015.3 but should also work with other version of
Vivado.

• BLISS was tested with ISE 14.7 but should also work with other version of ISE.
• You can find further information and a copy of the paper and other works on our project
website.

3.4 Running tests and benchmarks

• To see NewHope in action run the Test_NewHope.vhd testbench.
• To see BLISS in action run the bliss_sign_then_verify_tb.vhd testbench. Edit the

generics to simulate different parameter sets. Some fixed paths might not work (relative
is also not an option). Please fix them when you see the error messages.

3.5 Benchmarks

scheme implementation LUT FF BRAM DSP MHz Cycles

NewHope-1024 server 5,142 4,452 4 2 125 171,124
NewHope-1024 client 4,498 4,635 4 2 117 179,292
BLISS-I SignHuff_CDT 7,193 6,420 5.5 5 139 15,864
BLISS-I Sign_BER 8,313 7,932 5 7 142 15,840
BLISS-III Sign_CDT 6,397 6,179 6.5 5 133 27,547
BLISS-IV Sign_CDT 6,438 6,198 7 5 135 47,528
BLISS-I VerifyHuff 5,065 4,312 4 3 166 16,346
BLISS-I Verify 4,366 3,887 3 3 172 9,607
BLISS-III Verify 4,298 3,867 3 3 172 9,628

https://newhopecrypto.org
http://bliss.di.ens.fr/
http://http://www.seceng.rub.de/research/projects/pqc/
http://http://www.seceng.rub.de/research/projects/pqc/

12 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

scheme implementation LUT FF BRAM DSP MHz Cycles

BLISS-IV Verify 4,356 3,886 3 3 171 9,658

3.6 License

• The License for NewHope can be found in NewHope/license.rtf
• The License for BLISS can be found in BLISS/lattice_processor/license.rtf

	Introduction
	pqm4
	Introduction
	Schemes included in pqm4
	Setup/Installation
	Installing the ARM toolchain
	Installing stlink
	Installing pyserial
	Connecting the board to the host
	Downloading pqm4 and libopencm3

	API documentation
	Running tests and benchmarks
	Benchmarks
	Speed Evaluation
	Stack Usage

	Adding new schemes and implementations
	Using optimized FIPS202 (Keccak, SHA3, SHAKE)

	License

	pqhw
	Introduction
	Schemes included in pqhw
	Setup/Installation
	Running tests and benchmarks
	Benchmarks
	License

