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Abstract

This document provides the PQCRYPTO project's �nal report on all results achieved by the
partners in work package 1. It summarizes recommendations considering the e�cient software
and hardware implementation of post-quantum algorithms on embedded low-cost devices.
In particular, it also includes results and countermeasures obtained from mounting physical
attacks against the implementations.
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1 Introduction

The EU and governments around the world are investing heavily in building quantum com-
puters. Society needs to be prepared for the consequences, including cryptanalytic attacks
accelerated by these computers. In particular, Shor's algorithm [77] shatters the foundations
for deployed public-key cryptography: RSA and the discrete-logarithm problem in �nite �elds
and elliptic curves. Long-term con�dential documents such as patient health-care records and
state secrets have to guarantee security for many years, but information encrypted today using
RSA or elliptic curves and stored until quantum computers are available will then be as easy
to decipher as Enigma-encrypted messages are today.

Modern asymmetric cryptosystems that are designed to face multiple threats and maintain
long-term security require conservative parameter choices that typically pose a major imple-
mentation challenge for constrained devices. We developed a number of new implementation
techniques (and also adapted already known techniques) to make post-quantum cryptogra-
phy feasible on constrained devices despite the limited computing resources available to these
devices.

In this report we summarize the work that has been carried out byWP1. To tackle the chal-
lenging task of quantum-safe cryptography on constrained devices, PQCRYPTO developed a
number of software and hardware implementations for embedded devices, like microcontrollers
and FPGAs. As in many applications an attacker has physical access to these devices, they
also need to be secured against side-channel attacks. To improve the side-channel security
of post-quantum implementations the partners also examined possible attacks and proposed
countermeasures against those. Below we summarize the software and hardware implementa-
tions developed by WP1 and the side-channel attacks resp. countermeasures that have been
found resp. developed by WP1.

1.1 Implementations developed by PQCRYPTO

Table 1.1 gives an overview of all WP1 microcontroller implementations. Our hardware imple-
mentations are shown in Table 1.2. We go into more detail about the software implementations
in Section 3 and about the hardware implementations in Section 4.

1.2 Side-channel attacks and countermeasures by PQCRYPTO

In Table 1.3 we summarize the side-channel attacks and countermeasures that have been
carried out by PQCRYPTO. A more detailed discussion can be found in Section 5.

2 Target Platforms

The goal of this work package is to develop implementations for small devices that have
constrained computing capabilities. The software implementations discussed in this report
therefore target microcontroller architectures. The challenging part about developing mi-
crocontroller implementations is to make to implementation �t into the devices constrained
memory and still achieve a practical performance despite the low clock frequency the micro-
controller is running out. Furthermore, the developer has to deal with a reduced instruction
set, for instance some microcontroller do not even have access to a hardware multiplier.
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Scheme Platform Cycles RAM Bytes ROM Bytes

NewHope [3] ARM Cortex-M4 gen: 964 440 gen: - 22 828
enc: 1 418 124 enc: - 22 828
dec: 178 874 dec: - 22 828

NewHope [3] ARM Cortex-M0 gen: 1 168 224 gen: - 30 178
enc: 1 738 922 enc: - 30 178
dec: 298 877 dec: - 30 178

QcBits [21] ARM Cortex-M4 gen: 140 372 822 gen: - 62KiB
enc: 2 244 489 enc: - 62KiB
dec: 14 679 937 dec: - 62KiB

RLWE encryption [15] ARM Cortex-M0 gen: - gen: - -
enc: 1 573 x103 enc: - 1.6KiB
dec: 740 x103 dec: - 1.1KiB

RLWE encryption [15] AVR ATxmega gen: - gen: - -
enc: 999 x103 enc: - 3.5KiB
dec: 437 x103 dec: - 2.1KiB

QC-MDPC encryption [57] ARM Cortex-M4 gen: - gen: - -
enc: 7 018 493 enc: 2.7KiB 5.7KiB
dec: 42 129 589 dec: 2.7KiB 5.7KiB

QC-MDPC hybrid encryption [83] ARM Cortex-M4 gen: 63 185 108 gen: 3 136 8 784
enc: 2 623 432 enc: 2 048 8 621
dec: 18 416 012 dec: 2 048 3 064

SPHINCS-256 [44] ARM Cortex-M3 gen: 28 205 671 gen: - 47 948
sign: 589 018 151 sign: 8 755 26 944
verify: 16 414 251 verify: - 26 976

XMSSMT [44] ARM Cortex-M3 gen: 8 857 708 189 gen: - -
sign: 19 441 021 sign: - -
verify: 4 961 447 verify: - -

Table 1.1: Microcontroller implementation results of post-quantum public-key encryption
schemes. All implementations listed are results of the PQCRYPTO project.

Scheme Security Platform Pub.

NewHope 281 bits XC7A35T [62]
BLISS 128 Bits XC6SLX25 [67]

Table 1.2: Hardware implementations developed by PQCRYPTO. For a better comparison
the stated security levels assume a classical attacker.

Name Scheme Pub.

CCA2 Masking R-LWE [64]
Cache Attack BLISS [13]
Cache Attack BLISS [66]

Table 1.3: Side-channel attacks and countermeasures.
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The primary testing platform for code targeting microcontrollers is the STM32F407 Dis-
covery development board, which features a Cortex-M4 processor with �oating-point support
running at a frequency of up to 168MHz, 1MB of �ash storage, and 192KB of RAM. The
reasons for selecting this particular family of microcontrollers are primary target platform are
the following:

• ARM Cortex-M 32-bit microcontrollers are increasingly becoming the de-facto standard
for many applications; smaller microcontrollers of the same family like the Cortex M0
take over large parts of the market that has for a long time been dominated by 8-bit
AVR microcontrollers. Optimizing for a Cortex-M processor thus ensures relevance of
the results for many real-world applications.

• Selecting a rather high-end microcontroller from the Cortex-M family signi�cantly ex-
tends the range of cryptographic primitives that we can �t into the available RAM and
ROM and thus evaluate di�erent trade-o�s of primitives and parameter choices. The
choice for a large microcontroller also re�ects the fact that in most applications the
deployment of post-quantum primitives is still going to take a few years (in many cases
awaiting standardization by NIST and ETSI). Today's high-end microcontrollers are
likely to re�ect what low-end microcontrollers will look like by the time that applica-
tions migrate to post-quantum cryptography on a large scale.

• Selecting the STM32F407 Discovery board is motivated by the fact that it is widely
available at low cost, which ensures easy reproducibility of benchmark results for other
research groups.

In addition to the primary target platform we also report on optimization e�orts of select
post-quantum schemes for smaller microcontrollers, speci�cally the ARM Cortex-M0 32-bit
microcontroller and the AVR ATmega family of 8-bit microcontrollers.

Regarding the hardware implementations, there are two classes of target architectures
for e�cient cryptographic implementations, �eld-programmable gate arrays (FPGAs) and
application-speci�c integrated circuits (ASICs). An FPGA is a recon�gurable integrated cir-
cuit. In contrast to an ASIC, an FPGA is not bounded to one speci�c purpose since the
con�guration can be changed at any time after manufacturing and even after distribution in
the �eld. This is especially useful when the security measures of a production system in the
�eld turn out to be insecure. To achieve a high level of �exibility, the FPGA largely consists of
a regular grid of con�gurable logic blocks (CLBs). The CLBs themselves consist of a number
of slices and a switching matrix. While the slices contain the recon�gurable logic, the switch
matrices connect adjacent CLBs and realize the routing of the signals. Besides CLBs, there
are other resources available such as block RAM memory and digital signal processors (DSPs).
FPGAs are used increasingly often in commercial products since their recon�gurability allows
fast prototyping and therefore reduces the time to market. Also the regular structure leads to
a simpler design cycle since routing, placement, and timing can mostly be automated.

On the other side, ASICs are designed to serve one particular purpose for which it com-
prises a speci�cally tailored hardware circuit. Once manufactured, the design is static and
adjustments can only be made by physically exchanging the hardware. But this allows for
more compact designs and speed optimizations since only components that are actually neces-
sary are included in the design while FPGA designs most likely will not reach 100% utilization.
More compact designs mean cheaper unit costs for high volume designs. Additionally, ASIC
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designs are usually less power-consuming than FPGA designs. But on the other hand, de-
signing an ASIC comes with upfront non-recurring costs for development tools and expensive
respins.

The choice of the target architecture mainly depends on the use case. If a highly optimized
implementation is expected to meet the design requirements and high quantities of the product
should be produced, it is probably best to choose an ASIC as the target platform as they are
cheaper in production. For lower quantities and greater �exibility after distribution, FPGA
implementations should be considered as they o�er faster prototyping and are cheaper in
development. In particular, the aspect of �exibility by FPGAs is often regarded as highly
bene�cial for security applications since their cryptographic cores can be easily replaced in
the �eld in case they turn out to be insecure. This particularly holds true for post-quantum
cryptography: since many of the proposed constructions are rather new and thus have not
undergone a thorough and long-lasting cryptanalytic review yet. FPGA implementations are
preferable when quick upgrades are necessary and expected over the lifetime of the service. In
this sense, we will put particular emphasis on FPGA implementations in this report.

3 Software Implementations

3.1 Optimization for embedded microcontrollers

Optimization of cryptographic software on large processors found, for example, in servers,
desktop and laptop computers or smartphones typically aims at speed, i.e., minimizing the
number of CPU cycles required for cryptographic operations. Optimization of cryptographic
software on small embedded microcontrollers is a multidimensional task, typically aiming at
maximizing speed, while minimizing ROM and RAM usage. Those optimization goals are
often con�icting. For example, using tables of precomputed frequently used values speeds up
the software (because the values do not need to be recomputed), but increases RAM or ROM
usage (depending on where the precomputed tables are stored). This makes such optimization
e�orts highly non-trivial, but very rewarding, as a one-time e�ort can be deployed immediately
in many di�erent places.

Common good practice is to ensure that code does not leak secret information through
timing. The reason is that timing attacks (i.e., attacks that exploit such timing leakage) are
often feasible even remotely, so physical protection of devices does not thwart these attacks.
Some deployment scenarios also need to take into account side-channel attacks with phys-
ical access to the device (such as power analysis or analysis of electromagnetic radiation).
Implementations for such deployment scenarios require additional protection.

In the following we describe optimization techniques for our primary target platform, the
ARM Cortex-M4 microcontroller. Most of these optimization techniques also apply to other
embedded microcontrollers; some are speci�c to the ARMv7-M instruction set of the Cortex-
M4.

3.1.1 Loop unrolling and inlining.

When repeating a fragment of code (possibly with a slight variation for each repetition), one
would typically encapsulate it in a loop or a function, depending on the speci�c repetition
context. While this reduces the code size and makes the logic easier to understand and
maintain, it increases the number of instructions that need to be performed. It also impacts
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register usage. In particular, keeping track of a loop iterator results in both administrative
overhead and additional variables � either in registers, on the stack, or both.

To mitigate this, one can unroll loops and inline the content of functions: by literally
specifying the repeated instructions, program �ow code is avoided altogether. On embedded
devices, however, an important consideration here is the additional storage requirement, as
well as the overhead of having to load more code from the (often slow and uncached) memory.

Using compile-time macros or code generation, the program �ow can still be speci�ed using
loops and function calls, but the resulting executable is free of such overhead. This provides
�exibility that allows for careful code size and runtime trade-o�s, depending on the available
resources.

3.1.2 Memory alignment.

When loading or storing instructions or data, or when performing branches, the Cortex-M4
processor prefers that the addresses are word-aligned ; if they are not, penalty cycles may be
introduced. A word is 4 bytes, so careful alignment ensures that all addresses are divisible by
4, which is not done automatically when programming in assembly, but can be enforced by
placing the assembler directive .align 2 at the start of all data blocks and branch targets,
such as at the start of functions.

Starting code at a word boundary is not su�cient to ensure instruction alignment through-
out the full computation. The reason is that some instructions can be encoded in either 2
bytes or 4 bytes. When a 4-byte instruction is spread over two separate words, a penalty cycle
may be introduced when loading these instructions from �ash memory. It can therefore be
advantageous to use add.w instead of add, to force a 4-byte encoding for this instruction (see
A6.7.4 of the Architecture Reference Manual [53]).

3.1.3 Pipelining loads.

The ARM Cortex-M4 features a �load multiple� (ldm) instruction, which takes N+1 cycles for
loading N word-sized values from memory. A single load (ldr) takes two cycles, so grouping
multiple loads together into an ldm improves both speed and code size.

3.1.4 Table lookups and caching.

The performance di�erence between loading data from main memory and computing them is
not as large on the Cortex-M4 as on a big Intel CPU. It can therefore quickly be favorable to
precompute data and to use lookup tables. However, this should be avoided for secret data,
as this could leak information about the secret in a context where side-channel attacks with
physical access to the device are a concern.

When an assembly developer wants to store constant byte-sized values, the obvious way
to proceed is to use the .byte directive. However, we have described that it can be faster
to perform loads of word-sized values, especially when they can be pipelined. Depending on
the desired trade-o� between speed and ROM/RAM usage, sometimes using a full .word for
every byte can be bene�cial.
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3.1.5 Data recomputation.

Sometimes data is stored in memory, but an implementation can be made smaller by com-
puting that data on the �y at the cost of only a small performance penalty. There are also
intermediate alternatives where only some values are stored and the rest can somehow be
recomputed from them.

3.2 Benchmarking on embedded microcontrollers

In order to gain insight in the cost of deploying post-quantum cryptography in many di�erent
contexts, reliable benchmarks (measurements of speed and memory usage) of the various cryp-
tographic systems on a range of platforms are essential. Especially in the context of embedded
microcontrollers, a few kilobytes less memory usage or a few milliseconds faster implementa-
tion can make the di�erence in earlier widespread adoption of post-quantum cryptography.
We should therefore be able to benchmark at a high accuracy.

The highest level of accuracy is gained when measuring speed at the level of CPU clock
cycles, and by measuring ROM and ROM usage in the exact number of bytes that are used.
While measuring ROM and RAM usage is fairly straightforward, getting reliable speed mea-
surements of an implementation can be notoriously di�cult.

The main reason is that modern CPUs are so complex, that there is a large amount of
external e�ects that can have signi�cant impact on cycle counts. While this problem might
be smaller on an embedded microcontroller compared to a big Intel CPU, it is still something
that should be considered. A problem that is larger on embedded microcontrollers is the larger
range of di�erent memory blocks and peripherals that all have di�erent timing characteristics.
Other reasons for a large deviation in cycle counts could be that the cryptography algorithms
are simply designed that way (for example, the use of rejection sampling in lattice-based
cryptoschemes) or the use of randomness that has to be supplied by an external peripheral.

We now describe a few considerations that are required to get reliable benchmarks on our
ARM Cortex-M4 target platform.

3.2.1 Choosing a cycle counter.

The Cortex-M4 comes with two methods of measuring CPU cycles. First of all, the Data
Watchpoint and Trace component is responsible for providing several debugging features. It
also comes with a 32-bit incrementing cycle-accurate counter that can be read by an application
using the special DWT_CYCCNT register. However, 232 cycles is not enough to benchmark all
post-quantum crypto schemes, so this register might over�ow many times. A debug event is
emitted on over�ow, but capturing this requires additional debugging hardware.

The alternative is the SysTick system timer, which is a 24-bit decrementing counter that
is decremented at a set frequency, which should be the same as the main clock frequency for
accurate benchmarks. Its current value can also be read from a special register, SYST_CVR.
On under�ow, an interrupt is �red. One can keep track of how many times this interrupt was
�red and combine that with the values before and after a cryptographic operation to get a
complete picture of the number of cycles that were required.
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3.2.2 CPU wait states and clock frequency.

On the STM32F407, loading instructions and data from �ash memory can be a serious bot-
tleneck when the main CPU clock frequency is set to the maximum 168 MHz. The memory is
not fast enough to keep up with the main CPU, which then has to idle until the instructions
or data are retrieved. Moreover, how long the CPU has to idle depends on the speci�c chip.
A reliable benchmark of post-quantum cryptographic algorithms should be meaningful across
all Cortex-M4 chips, which means that this waiting behavior should be avoided to exclude the
e�ect of the speci�c chip. On the STM32F407, this can be achieved by selecting a lower clock
frequency and con�guring a zero wait state latency in the special FLASH_ACR register.

3.2.3 Randomness.

Speci�cations of post-quantum cryptographic systems typically require a source of fresh uni-
form randomness. The implementer then has to decide where to get this high-quality ran-
domness from, which is far from trivial. The STM32F407 development board comes with a
hardware random number generator that passes the FIPS PUB 140-2 tests with a success
ratio of 99%. It delivers a fresh 32-bit value at at most every 40 periods of a special RNG
clock that is derived from the PLL clock. However, in practice this introduces some deviation
in speed benchmarks, which should therefore be repeated multiple times.

3.2.4 Measurement setup.

Benchmarks should always happen multiple times, preferably as often as is feasible. One could
average the results, but a few outliers (for example, due to some faulty hardware) can then
have a large e�ect on the average. Using the median values is more robust.

3.3 Implementations of public-key encryption and key encapsulation

Table 1.1 lists implementations of post-quantum digital-signature schemes optimized for em-
bedded microcontrollers. All implementations listed are results of the PQCRYPTO project
that are described in scienti�c publications. Note that this table only summarizes �stan-
dalone� implementations. For benchmarking results of the �nal software portfolio packaged
in the pqm4 library, see Deliverable 1.6.
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Traditionally, the two main directions for post-quantum public-key encryption and key
agreement are lattice-based schemes and code-based schemes. A potentially interesting addi-
tional candidate is supersingular-isogeny based key encapsulation [45, 24], but as this approach
only fairly recently received increased attention and as it is rather ine�cient in terms of speed,
there are no optimized microcontroller implementations, yet.

3.3.1 Lattice-based public-key encryption and key encapsulation

Lattice-based cryptography has probably received most attention among the di�erent areas
of post-quantum cryptography over the last decade. Unsurprisingly, also implementations
optimized for microcontrollers have been an active area of research. Most of the e�orts of op-
timizing lattice-based encryption and key encapsulation focused on ideal lattices. For example,
both [72] and [55] present optimized Ring-LWE encryption targeting the AVR 8-bit microcon-
trollers; [15] describe implementations on the ARM Cortex M0 and AVR ATXmega128; [25]
presents results for the ARM Cortex-M4F; and [3] describe implementations of the NewHope
lattice-based key agreement on ARM Cortex-M0 and ARM Cortex-M4, The general pattern of
these papers is to optimize two main building blocks: arithmetic in the underlying polynomial
ring and noise sampling. The typical approach to perform multiplications in the polynomial
ring is to use the number-theoretic transform (NTT), which is not only very e�cient in terms
of speed, but can also be performed in place, i.e., without requiring any additional memory.
For quite some time, noise sampling focused on di�erent approaches for discrete-Gaussian
sampling, investigating multiple di�erent algorithms with di�erent tradeo�s between speed,
memory requirements and side-channel characteristics. In [2] established that a much simpler
centered-binomial distribution is su�cient for lattice-based encryption and key agreement.
Consequently, [3] use this simpler distribution in their implementation of NewHope.

3.3.2 Code-based public-key encryption and key encapsulation

The McEliece cryptosystems [58] with binary Goppa codes is widely considered one of the
most conservative choices of post-quantum public-key encryption. Its implementation on
small embedded microcontrollers is hampered by the large public key, but this does not mean
that nobody tried to implement it. For example, [29] optimizes for the AVR ATXmega192 and
concludes that �the large public-key matrix Kpub does not �t into the 192 kByte internal Flash
memory. Hence, at least 512 kByte external memory are required for storing the public key�.
More recent works focus on optimizing McEliece with quasi-cyclic medium-density parity-
check (QC-MDPC) codes, that have considerably smaller public keys, but do not have the
same long-term security track record as McElice with binary Goppa codes. For example, [39]
targets AVR 8-bit microcontrollers; [57] optimizes McEliece with QC-MDPC codes on ARM
Cortex-M4 microcontrollers; the same architecture targeted by the �QcBits� key-encapsulation
mechanism described in [21] and in the recent work [26]. Both AVR 8-bit microcontrollers
and 32-bit ARM microcontrollers (speci�cally, the Cortex-M4) are the target of optimization
in [83].

3.4 Digital Signatures

Table 1.1 also lists implementations of post-quantum digital-signature schemes optimized for
embedded microcontrollers. All implementations listed are results of the PQCRYPTO project
that are described in scienti�c publications.
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The two most promising approaches for post-quantum signatures, in particular on em-
bedded devices, are hash-based signatures and lattice-based signatures. Multivariate-based
signatures are also a potentially interesting candidate because of their small signature size.
However, they su�er from large public keys that prohibits veri�cation of multivariate signa-
tures on many embedded platforms.

3.4.1 Hash-based Signatures

Hash-based signatures are without much doubt the most conservative choice for post-quantum
cryptography, or possibly more generally for public-key cryptography. The reason is that they
can be built from only a cryptographic hash function, a building block that is also required
for all other signature schemes. This promise of high security come at a cost: the so-called
`stateful' XMSSMT scheme has a non-standard API that requires updating the secret key,
while the `stateless' SPHINCS scheme produces large signatures and is considerably slower
than its competitors. On embedded devices, the consequences of having to maintain a state
(i.e. synchronization, complex backups, etc.) are not as severe. Indeed, [43] presents a
smart card implementation of XMSS, and its authors demonstrate its practicality by e�ciently
generating signatures as well as key pairs on-card. Implementing SPHINCS on constrained
devices is less straight-forward. In addition to the large runtime, its memory requirements
present a potentially insurmountable hurdle: on devices with limited storage space available,
it is not possible to store the full signature. The implementation described in [44] shows that
this is not a hard limit, streaming out the SPHINCS signature part by part as it is generated.
Still, its poor performance may prove prohibitive in many typical use cases for small devices.

3.4.2 Lattice-based Signatures

Optimization of lattice-based signatures on embedded microcontrollers so far focused mainly
on two schemes: the GLP signature scheme presented in [35] and the BLISS signature scheme
presented in [27]. For example, [72] presents optimizations of BLISS for AVR ATXmega micro-
controllers. Also [63] presents optimized implementations of BLISS, but on the ARM Cortex-
M4F. In [12], the authors describe a conversion of the signature schemes from [35] and [27]
to authentication protocols and implementations of those protocols on AVR ATmega and on
a smart card equipped with an ARM7TDMI 32-bit processor. Optimization of lattice-based
signatures�like with lattice-based public-key encryption and key encapsulation�focuses on
fast arithmetic in polynomial rings (typically via the NTT) and e�cient sampling of noise.
One might think that lattice-based signatures and encryption would naturally share large
parts of optimized code (like is the case with today's elliptic-curve cryptography), however,
the situation is more complex: lattice-based signatures need larger parameters and are much
more sensitive to the selection of the noise distribution. As a result, carefully optimized
implementations of signatures and encryption schemes cannot share code without sacri�cing
performance, mainly for encryption.

4 Hardware Implementations

In this section we give an overview of existing implementations of post-quantum schemes. We
are not aware of any hardware implementations of multivariate quadratic schemes. For hash-
based scheme, there are implementations of one-time signature schemes [6], but as those are
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only able to generate a single signature for a given key pair, we did not consider those. Thus
we mainly focus on implementations of lattice-based and code-based schemes. We also brie�y
review some hardware implementations of hash-functions as those are the building blocks for
the hash-based signature schemes XMSS [16] and SPHINCS [8].

4.1 Encryption and Key Exchange

There are several hardware implementations of post-quantum encryption and key exchange
schemes. The most relevant ones are reviewed here and summarized in Table 4.1.

Scheme Security Platform FFs LUTs Slices BRAMs Time

QC-MDPC McE enc[39] 80 bits XC6VLX240T 14,429 9,201 2,924 0 13.7 µs
QC-MDPC McE dec[39] 80 bits XC6VLX240T 32,974 36,554 10,271 0 125.4 µs
QC-MDPC McE enc[81] 80 bits XC6SLX4 119 226 64 1 3.4 ms
QC-MDPC McE dec[81] 80 bits XC6SLX4 413 605 159 3 23.0 ms
Goppa McE enc[29] 80 bits XC3S1400AN 804 1,044 668 3 2.2 ms
Goppa McE dec[29] 80 bits XC3S1400AN 8,977 22,034 11,218 20 21.6 ms
Ring-LWE enc[70] 105 bits XC6SLX9 238 317 95 2 0.9 ms
Ring-LWE dec[70] 105 bits XC6SLX9 87 112 32 1 0.4 ms
Ring-LWE enc/dec[69] 105 bits V6LX75T 3624 4549 1506 12 26 µs
Standard-LWE enc[42] 128 bits S6LX45 4,676 6,078 1,866 73 0.8 ms
Standard-LWE dec[42] 128 bits S6LX45 58 63 32 13 0.2 ms
Lattice-based IBE [80] 80 bits S6LX25 6,067 7,023 - 16 80 µs
Lattice-based IBE [80] 192 bits S6LX25 8,686 8,882 - 27 164 µs
NewHope (server)[62] 281 bits XC7A35T 4,452 5,142 - 4 1.4 ms
NewHope (client)[62] 281 bits XC7A35T 4,635 4,498 - 4 1.5 ms

Table 4.1: FPGA implementation results of post-quantum encryption schemes. Note that the
given security levels are considering the pre-quantum setting.

4.1.1 Lattice-based Cryptography

Lattice-based cryptography can be divided into two groups, one for the schemes that base their
security on standard lattices and one for schemes that base their security on ideal lattices.
While the latter o�ers a higher performance and smaller key sizes they also introduce an
additional structure in the underlying lattice and that is why standard lattice schemes are
usually considered to be a more conservative choice.

The (standard) learning with errors (LWE) encryption scheme [65] has been implemented
by Howe et al [42]. The two main operations in this scheme are matrix-vector multiplication
and Gaussian sampling. The matrix-vector multiplications are performed serially with the
help of a single DSP. Gaussian samples are generated using a Bernoulli sampler [27] as it does
not require large precomputed tables. The uniformly distributed random numbers that the
Gaussian sampler requires as input are generated using the stream cipher Trivium [17]. Their
implementation of the LWE encryption requires 6,078 LUTs, 4,676 FFs, and 1,811 slices on
a Spartan-6 FPGA. Due to the size of the keys the implementation also requires 73 BRAM
modules. This number can be reduces by generating parts of the public key on-the-�y instead
of storing it precomputed in BRAMs.
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The counterpart to LWE in ideal lattices is called ring learning with errors (R-LWE) [56].
This scheme has been implemented several times. The �rst implementation of R-LWE has
been published by Göttert et al. in 2012 [34]. he authors presented a hardware implemen-
tation of the RLWE encryption scheme on a Virtex 7 FPGA. To achieve an acceptable level
of performance, the authors tweaked the parameters of the scheme to be able to use the
Number-theoretic transform (NTT) for lowering the complexity of polynomial multiplication
from O(n2) to O(n log(n). In contrast to matrix-vector multiplication, polynomial multipli-
cation in the frequency domain, computed using NTT, can be optimized in several ways.
During the transformation, it is necessary to compute the twiddle factors, which are powers of
a root of unity. Those twiddle factors can be precomputed or calculated on-the-�y. Designers
can choose the preferred implementation depending on the design goals, namely whether the
implementation should be optimized for memory consumption or performance. The core op-
eration of the NTT is the butter�y operation that takes two coe�cients of the polynomial and
performs one multiplication, one addition, and one subtraction. Multiple butter�y operations
can be executed in parallel.

Pöppelmann and Güneysu [68] presented an optimized NTT multiplier. Their work was
further extended to implement a complete RLWE encryption scheme in 2013 [69]. While the
design by Göttert et al. was large and could only be placed on large Virtex-7 FPGAs, Pöppel-
mann and Güneysu proposed an architecture suitable for smaller recon�gurable devices, such
as a Spartan 6 device. Furthermore, since their implementation relies on a generic microcode
engine, it can also be used for other lattice-based implementations. Since then, several further
optimizations have been proposed. Aysu et al. reduced the area consumption of the NTT
[5]. Roy et al. enhanced the performance of NTT [76] by optimizing the memory access
and simplifying the structure of the algorithm. That design was further optimized by using
a more e�cient Knuth-Yao sampler [50] which requires less FPGA resources. The smallest
FPGA implementation, to the best of our knowledge, has been presented by Pöppelmann and
Güneysu [70], the overall resource occupation of which is 32 slices, 1 BRAM, and 1 DSP. To
achieve such a low area design, the authors chose a parameter set for which the modulus is
a power of two. As a result, there was no need for a modular reduction step. The drawback
of the proposed set of parameters is that the NTT is no longer applicable. As a result, the
computation time is increased by one order of magnitude. New Hope by Alkim et al. [2] is an
e�cient key exchange scheme based on R-LWE. The implementation by Oder and Güneysu
[62] shows that the scheme is practical on FPGAs. Due to the higher security level (and
therefore larger parameters) the implementation is signi�cantly slower than implementations
of plain R-LWE encryption.

There are also a number of FPGA implementations of the NTRU encryption scheme [41],
like [47] or [54]. However as NTRU is still protected by patents [40] we do not further consider
NTRU implementations.

Lattice-based cryptography also allows practical identity-based encryption. The identity-
based encryption proposed by Ducas et al. [28] has been implemented for an FPGA as well
[80]. However, the implementation only covers the encryption and the decryption that are
very similar the the R-LWE encryption scheme. The master key generation and the user
key generation has not been implemented as the constrained resources of an FPGA are not
su�cient to perform these operations.
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4.1.2 Code-based Cryptography

The code-based encryption scheme McEliece [59] and its variant by Niederreiter [61] have also
been implemented on hardware devices. McEliece can be instantiated with di�erent codes.
While the original scheme uses Goppa codes, quasi-cyclic modest density parity-check (QC-
MDPC) codes provide a better e�ciency. However, QC-MDPC codes provide an additional
structure that might be exploitable. Choosing QC-MDPC codes over Goppa codes is therefore
similar to choosing ideal lattices over standard lattice.

McEliece with Goppa codes has been implemented on a Xilinx Spartan-3AN FPGA by
Eisenbarth et al [29]. As the implementation relies on Goppa codes, the public and the secret
key are huge matrices. The McEliece decryption is much more complex than the encryption
due to the decoding algorithm that is used to recover the message. Thus, the implementation
of [29] needs 668 slices, 1,044 LUTs, 804 FFs, and 3 BRAMs for the encryption, but 11,218
slices, 22,034 LUTs, 8,977 FFs, 20 BRAMs for the decryption. Both modules (encryption and
decryption) also need 4,644 Kbits of Flash memory. The design was improved by Ghosh et al.
[32] by reducing the number of required slices during the decryption to 2,979 and the number
BRAMs to 5. Furthermore the decryption latency was reduced to 1 ms instead of 10.8 ms.

The performance and resource consumption of QC-MDPC McEliece has been evaluated on
recon�gurable hardware in [39] and [81]. While the work of [39] aims for a high-speed imple-
mentation for Virtex-6 FPGAs, [81] focuses more on developing a lightweight implementation
that even �ts on a low-cost Spartan 6-FPGA. Thus the results are very di�erent. While the
high-speed implementation of [39] takes 13.7 microseconds for encryption and 125.4 microsec-
onds for decryption, the lightweight implementation of [81] is two orders of magnitude slower
as it takes 3.4 milliseconds for encryption and 23 milliseconds for decryption. On the other
hand, the lightweight implementation takes much less resources. The encryption takes only
119 FFs, 226 LUTs, and 64 slices while the high-speed encryption needs 14,429 FFs, 9,201
LUTs, and 2,924 Slices. However, the lightweight implementation requires 1 resp. 3 BRAMs
for encryption resp. decryption while the high-speed implementation does not require any.

4.2 Digital Signatures

For post-quantum digital signatures, less hardware implementations exist. The implementa-
tions we are aware of are summarized in Table 4.2.

Scheme Security Platform FFs LUTs Slices BRAMs Time

GLP-Sign[35] 80 bits XC6SLX16 8,993 7,465 2,273 29.5 1 ms
GLP-Verify[35] 80 bits XC6SLX16 6,663 6,225 2,263 15 1 ms
BLISS-Sign[67] 128 bits XC6SLX16 6,420 7,193 2,291 5.5 114 µs
BLISS-Verify[67] 128 bits XC6SLX16 4,312 5,065 1,687 4 58 µs
SPHINCS[4] 256 bits Kintex 7 38,132 19,067 - 36 1.53 ms

Table 4.2: FPGA implementation results of post-quantum signature schemes. Note that the
given security levels are considering the pre-quantum setting.

4.2.1 Lattice-based Cryptography

Implementing lattice-based signature schemes is a more challenging task, since the standard
deviation of the Gaussian sampler is usually much higher compared to encryption schemes.
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Furthermore, additional components, such as hash functions and a rejection step, are required.
So far, only ideal lattice-based signature schemes have been implemented on FPGAs. The main
reason is that standard lattice signature schemes like TESLA [1] need to be instantiated with
very large parameters.

The GLP signature scheme [35] was presented by G�"neysu et al. in 2012 and implemented
on a Spartan 6 FPGA. The BLISS digital signature scheme [27] was also implemented in hard-
ware [67]. The major di�erence between both schemes is that the error polynomials in BLISS
have Gaussian distributed coe�cients and ternary coe�cients in GLP. The BLISS FPGA de-
sign uses a table-based Gaussian sampler which, thanks to the Kullback-Leibler divergence,
can be implemented using little memory without a�ecting the performance. Implementing
Gaussian samplers in hardware is a challenging task: Many samplers have an non-constant
running time; e.g., when using rejection sampling, the sampler could theoretically require an
in�nite number of iterations. Other samplers need large precomputed tables that contribute
to a signi�cant share of the implementations overall memory consumption. In general, the
Knuth-Yao sampler is considered a good trade-o� between runtime and memory consumption.
For small standard deviations, the binomial sampler [2] is a good choice since it does not re-
quire any precomputed tables and has a constant running time. But as the standard deviation
grows, other techniques, like the already mentioned Knuth-Yao, become more interesting since
they feature a lower average running time and entropy consumption. The entropy consump-
tion of a sampler is important because it is also necessary to implement a pseudo-random
number generator that produces uniformly random bits.

4.2.2 Hash-based Cryptography

The only hardware implementation of hash-based signature schemes is the SPHINCS imple-
mentation by Amiet et al. [4]. The main building block in hash-based cryptography are hash
functions and hardware implementations of those are plentiful. The Third SHA-3 Candidate
Conference brought up lots of implementations results, like [37, 31, 52, 49, 48, 46]. It outper-
forms SHA-2 by an order of magnitude and is therefore an interesting candidate to instantiate
hash-based signature schemes with.

5 Physical Attacks on Cryptographic Implementations

In this section, we discuss attacks exploiting physical properties of an implementation to
gain knowledge of the secret key used in the executed algorithm. One distinguishes between
passive attacks in which the attacker only monitors information, like execution time, power
consumption, or electromagnetic radiation, and active attacks in which the attacker is allowed
to interfere in the execution of the cipher.

When dealing with active attacks, one distinguishes between di�erent levels of invasiveness.
A non-invasive attacker is only allowed to modify the environment like the temperature, the
voltage of the power supply, or the duration of clock cycles. These attacks usually aim to
generate a faulty result that can be used to reveal the secret key. A semi-invasive attacker
removes the package material of the device and introduces faults by shooting at the a speci�c
location at the device with light or electromagnetic radiation. Invasive attackers aim to even
alters the device itself and reverse-engineer the implementation.

Implementations are vulnerable to timing attacks if their execution time depends on se-
cret data. Power analysis exploits the fact that in CMOS technology the dynamic power
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consumption is dominating in comparison to the static power consumption. An attacker ex-
ecutes the algorithm and measures the power consumption during the execution. The most
important types of attacks on the power consumption leakage are simple power analysis (SPA)
and di�erential power analysis (DPA).

5.1 Fault attacks

The idea of fault attacks is to induce a fault into a circuit and use the faulty output to get
information about the secret key. This can be achieved by high temperature, unsupported
supply voltage or current, excessively high overclocking, strong electric or magnetic �elds, or
even ionizing radiation. Fault attacks are usually non-invasive as the induced fault is only
temporary and the device is not permanently damaged. The most prominent fault attack in
cryptography was carried out by Boneh et al. [11]. Their attack on RSA-CRT signatures
requires only one (arbitrary) faulty output and one correct output to break the scheme.

5.2 Timing attacks

When implementing cryptographic algorithms, the developer has to make sure that the exe-
cution time is independent of the secret data that is processed. Otherwise an attacker might
be able to exploit the information about the execution time. Such attacks should not only be
considered for embedded devices for which the attacker has physical access to, but also remote
timing attacks are a threat that must be considered as shown by Brumley and Boneh [14].
Timing information can be leaked by conditional branches, instructions with non-constant
execution time, and memory accesses that trigger cache hits or misses [7].

5.3 Simple power analysis

Simple power analysis [51] works similar to timing attacks. However, while timing attacks
exploit the timing information of one or many executions of the algorithms, one or a few
power traces of the executed algorithms are used to perform a simple power analysis. An
attacker uses visual examination to identify leaking instructions whose execution depends on
secret data. Thus, this attack is especially e�ective when the order of the executed instructions
di�ers from run to run. For instance, an RSA implementation with a naive implementation of
the square-and-multiply algorithm can easily be broken by SPA as the square operations and
multiply operations are usually easily distinguishable in the power trace. Signal-processing
techniques, like frequency �lters, might improve the result and make the visual inspection
easier.

5.4 Di�erential power analysis

While SPA targets the operation-dependency of the power consumption, DPA exploits its data-
dependency. Introduced in 1998 by Kocher et al. [51], DPA (in contrast to SPA) needs many
power traces and one analyzes the set of traces with statistical methods. When performing
DPA an attacker does not attack the whole key at once, but only a part, e.g. one byte. A DPA
is divided in an online phase and an o�ine phase. During the online phase, the attacker runs a
vast amount of executions of the algorithm to be attacked with di�erent inputs and measures
the power consumption of the target device during each run. DPA requires a leakage model
that is a prediction of the power consumption. Some leakage models are rather simple. For
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example, the Hamming weight model is based on the observation that the Hamming weight
of a value that is stored in a register, in�uences the power consumption. During the o�ine
phase, the attacker guesses the key byte and computes the intermediate value that he considers
suitable to apply the power model to. Depending on the power model and the intermediate
value, she assigns the corresponding power trace to one of two sets where one contains power
traces with high predicted power consumption and one set contains traces with low prediction
power consumption. For all power traces, the attacker stores the di�erence of the means of
the sets. If the attack worked, the correct key guess has a much higher di�erence of means
than the other guesses.

The Hamming weight leakage model is often applied when attacking software implemen-
tations. For hardware implementations a promising model is the Hamming distance model.
The Hamming distance model assumes that the more bit positions of the input and output
values of a circuit di�er, the more switching operations happened within a circuit, and the
higher is the power consumption. Other models that are more accurate require less traces to
successfully attack a target, but also need a deep knowledge of the implementation that is
attacked.

A commonly used methodology for side-channel analysis is the t-test leakage detection
method initially proposed in [33, 22]. For the non-speci�c �xed vs. random t-test one takes
two types of measurements, one with �xed input and one with random input. The t-statistic
t is computed as

t =
µF − µR√
σ2
F
nF

+
σ2
R
nR

where µF , σ2F , and nF (resp. µR, σ2R, and nR) denote the mean, variance, and number of
measurements set with �xed input (resp. random input). If the value exceeds the threshold
|t| > 4.5, the test has detected leakage. As this test does not perform an actual attack and
does not consider a certain power model it is called non-speci�c. Apart from the �xed vs.
random t-test it is also possible to perform a semi-�xed vs. random t-test. Such a test does
not �x the input but some intermediate values, e.g. part of the state of a block cipher to get
a more accurate result.

6 Countermeasures against Physical Attacks

In this section we discuss di�erent approach to prevent physical attacks such as timing and
side-channel analysis as well as fault-injection attacks. Note that there is not a single coun-
termeasure that can be applied to �x all vulnerabilities, in practice usually a combination of
countermeasures is applied.

6.1 Side-Channel Countermeasures

Hiding countermeasures are applied to raise the di�culty for an attacker to detect sensitive
information in a set of power traces. This can be achieved by introducing additional noise or
by trying to equalize the power consumption of all operations.

The �rst approach can be achieved by other computations that are executed in parallel or
by shu�ing the order of operations. For hardware implementations one can even instantiate
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dedicated noise generators to randomize the power consumption. If shu�ing is applied an at-
tacker needs to perform an extra alignment step before analyzing the power traces. Otherwise
the number of required power traces drastically increases.

The second approach is more suitable for hardware implementations as in microcontrollers
the developer has only limited in�uence on the power consumption of an instruction and
only one instruction can be executed in parallel (except the microcontroller features SIMD
instructions).

The idea behind masking is to split a secret value into several shares. The secret value can
only be reconstructed with the knowledge of all shares. The splitting of the secret value can be
performed in a Boolean way or in an arithmetic way. Boolean masking means that the XOR-
sum of all shares results in the secret value and arithmetic masking means that the arithmetic
sum or di�erence of the shares results in the secret value. There are conversion approaches
to switch between arithmetic and Boolean masking [23]. The major advantage of masking
schemes is that they allow to prove the side-channel security of an algorithm. Nevertheless,
there are still implementation challenges that have to be taken care of. Otherwise, a provably
secure algorithm might still have a side-channel leakage. To achieve higher-order security, it
is necessary to split the secret value into more shares.

6.2 Constant-time implementation

To prevent timing attacks and simple power analysis it is crucial to develop an implementation
that has a constant (or at least secret-independent) execution time. Some pitfalls that should
be avoided are:

• Comparison of secret strings: Such a comparison must not stop at the �rst unequal
character.

• Branches: Branches must not be dependent on secret data. Ideally the same branches
are taken for every run of the implementation.

• Table look-ups: On platforms with a cache, table look-ups can have varying access
times. Thus the index must not depend on secret data for such platforms.

• Compiler optimization: A developer must take care that the compiler does not re-
move instructions that are critical for the security of the implementation but irrelevant
for its functionality.

6.3 Countermeasures against fault attacks

The most intuitive way to detect a fault is to utilize redundant computations that are used
to check the correctness of the result. Spatial redundancy is a possible countermeasure for
hardware implementations and means the same operation is executed twice in parallel. This
countermeasures has only a small performance overhead but the area consumption doubles. In
contrast to that, temporal redundancy means executing another operation after the original
operations has been �nished. This can either be an additional decryption after an encryp-
tion operation to check whether the result matches the original plaintext or simply another
encryption to compare both ciphertexts.

For fault attacks that must induce the fault at a speci�c point in time, it is also possible to
randomize the order of the instructions to make an attack harder. Partial recon�guration on
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FPGAs can also be used to randomize the location of the circuit that compute the operation.
For linear operations error correcting codes can be used to detect faults.

7 Physical security of quantum-secure schemes

In this section, we review the state-of-the-art of research targeting the physical security of post-
quantum cryptography. We are not aware of any work related physical attacks on multivariate
quadratics and thus we do refrain from discussing these schemes. Similarly, there has not
been done much research on side-channel analysis of hash-based primitives yet. However the
underlying hash functions have been analyzed thoroughly in works like [9, 78, 84].

7.1 Code-based Cryptography

The McEliece encryption scheme [59] has been proposed in 1978 and belongs to the family of
code-based cryptography. Much e�ort has been spent on analyzing the side-channel security of
this scheme and developing suitable countermeasures. Simple power analysis of the scheme has
been performed for FPGA implementations [60] and microcontroller implementations [38, 82].
These works also show that the attack can be made much harder by providing a timing- and
instruction-invariant implementation.

Further more Chen et al. attacked McEliece FPGA implementations with DPA [18, 20].
The authors analyze the syndrome computation and are able to recover the complete secret key
with an additional algebraic step that exploits the relation between the public and private key.
As counteremasures to the presented attacks, Chen et al. also propose a masking scheme for
McEliece in [19] and evaluate the side-channel security of their masked FPGA implementation.
Their masking scheme is a hybrid of Boolean and arithmetic masking. The masks are generated
on-the-�y using a pseudo-random number generator.

7.2 Lattice-based Cryptography

The lattice-based ring learning with errors (R-LWE) encryption scheme [56] has also been
analyzed for its resistance against side-channel attacks in several works mainly focusing on
DPA. The �rst approach to secure R-LWE against DPA has been proposed by Reparaz et
al. in 2015 [75, 74]. The authors attempt to protect the secret key by splitting it into two
shares and perform all operations separately on both shares. However, the last step of the
algorithm is a decoding function that is not a linear operation and thus requires the knowledge
of both shares. To solve this problem [75] proposed a masked decoder. As this decoder has
a number of drawbacks, like being non-deterministic and increasing the failure rate of the
scheme, Reparaz et al. [73] proposed another approach in 2016. In [73] not the secret key,
but the ciphertext is split into two shares. This approach introduces a heavy computational
overhead as it requires another run of the decryption during the encryption. Oder et al. [64]
combined the ideas of [75] and [73] to avoid the aforementioned problems and also applied a
CCA2-conversion to R-LWE to make it secure against adaptive chosen-ciphertext attackers.
Furthermore the masking scheme from [64] has a proof to support its claim. Additionally,
[75, 73, 64] all provide results of practical measurements to demonstrate that the masking
schemes indeed prevent a leakage. Oder et al. also discuss the fault sensitvity of R-LWE in
[64].
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Lattice-based signatures schemes, like BLISS [27] and GLP [35], have also been analyzed for
their vulnerability to fault attacks in [10] and [30]. Both papers consider instruction-skipping
resulting in potential loop aborts and how to exploit such a fault. The work of Bindel et al. [10]
furthermore examines the impact of zeroing or randomization of critical values. The proposed
countermeasures mainly boil down to redundant computations that are used for correctness
checks. Another proposed countermeasure is to prevent instruction-skipping is to deliberately
induce a segmentation fault by allocating new memory for every intermediate result.

Bruinderink et al. [13] also found a cache-timing attack on the signature scheme BLISS.
More speci�cally, they attacked the Gaussian sampler that is used to generate noise polyno-
mials in BLISS and are able to extract the secret key with only 3,500 signatures. To prevent
timing attacks many implementations of lattice-based schemes provide a constant or secret-
independent execution time, like vectorized implementations of the GLP signature scheme and
the New Hope key exchange for Intel CPUs [2, 36]. Furthermore there are also microcontroller
implementations of R-LWE that are protected against timing attacks [71, 64].

8 Conclusions

In this report we presented the WP1 contributions to the PQCRYPTO project. We presented
our hardware and software implementations as well as side-channel attacks and countermea-
sures. We furthermore review the state-of-the-art of research of applied cryptography in the
�eld of embedded security to put our results into context.
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