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Abstract

This deliverable concludes Task 3.2 (“share files”) of the work package 3 (“Post-quantum
cryptography for the cloud “) of the PQCRYPTO project. The main purpose of this task
is to identify some of the most promising techniques for public key cryptography for long
term security in particular against a quantum adversary. The current document will present
results, mostly on the cryptographic techniques we wish to promote, and raise some issue
concerning their security.

Keywords: public key cryptography, post-quantum, code-based, hash-based, lattice-based ,
multivariate



ii



D3.4 — Cloud: Long-term public-key cryptography 1

Contents

1 Introduction 3

2 Digital Signature 3
2.1 Hash-Based Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Other Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Special Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Public-Key Encryption / Key Exchange Mechanisms 5
3.1 McEliece Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Other techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Security Assessment 6
4.1 Generic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Structural Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Some Issues with Protocols in a Quantum Setting 7



2 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security



D3.4 — Cloud: Long-term public-key cryptography 3

1 Introduction

The main objectives of WorkPackage 3 is to understand the means to provide very long
term (50 years) protection for users data in the cloud. The Task 3.2 is dedicated to public-
key cryptography, namely public-key digital signatures and public-key encryption and key
exchange mechanisms.

The present deliverable makes an assessment of the situation, reports the findings of the
project participants, and raises some issues that have been explored within the project lifetime
and to be explored beyond. The task is focused on two target systems, hash-based digital
signatures and the McEliece public-key encryption scheme. However, beyond that, the project
and its participants are concerned with any research, applied and fundamental, aiming at a
better understanding and a better design of cryptographic solutions for long term security, in
particular in the presence of an adversary endowed with quantum computing capabilities.

During the project period and within the scope of the task 3.2, the participants of the
PQCRYPTO project have produced numerous research publications which have appeared
in relevant international conferences and journals. This report categorizes those works and
explains how they coherently aggregate towards the project goals.

2 Digital Signature

2.1 Hash-Based Signatures

In the area of hash-based signatures, the participants produced several important results
during the first 18 project months. Project members were and are involved in the ongoing
standardization of XMSS, a stateful hash-based signature scheme, within IRTF [HBGM15],
the analysis of the security of hash-based signatures [HRS16b], research on the feasibility of
implementations (of hash-based signatures) on resource-constrained devices [HRS16a], and
the construction of short, fixed-length input hash functions [KLMR16a, GM16a].

Project members are authoring an Internet-Draft within the crypto forum research group
(CFRG) of the Internet research task force (IRTF). The draft is currently in last call and
awaits a document shepherd for publication as request for comments (RFC). Besides au-
thoring the Internet Draft, project members presented a tightened security reduction for the
scheme described in the draft [HRS16b]. Compared to previous versions of the scheme, this
tightened security analysis justifies to select shorter hash function output lengths, reducing
the signature size, while preserving the security level. It also justifies to use a 256-bit hash
function for the 256-bit classical and 128-bit quantum security level. The results can also be
applied to the stateless hash-based signature scheme SPHINCS, proposed by several project
members [BHH+15].

In the same work [HRS16b], project members present lower bounds on the complexity of
generic quantum attacks against the security properties of hash functions underlying XMSS.
This was the first work formally justifying post-quantum security claims of XMSS, as long
as a hash function is used that does not have specific quantum weaknesses. The latter is
assumed to apply to all “engineered” hash functions like SHA2, or SHA3.

The only practical proposal for stateless hash-based signatures so far is SPHINCS. While it
achieves reasonable speed on standard CPUs (14ms on Intel Haswell CPUs) and also signature
sizes reasonable on normal platforms (41KB), speed and sizes might become an issue on
resource-constrained devices. To evaluate the feasibility of using SPHINCS on such resource-
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constrained devices, project members did an implementation [HRS16a] on an ARM Cortex
M3 with only 16KB working memory1. Although it was possible to demonstrate feasibility,
the results also show that, on such constrained devices, a lot of struggle can be avoided if the
specific setting permits the use of stateful hash-based signature schemes.

The hash-functions used within hash-based signature schemes map short, fixed-length in-
puts to short outputs. This is not the typical setting today’s hash functions are designed for
and they often achieve good performance only for long variable-length inputs. Hence, the
performance of hash based signatures can be improved constructing dedicated hash functions
for the short, fixed-length input setting. Project members proposed two such dedicated hash
functions: Haraka [KLMR16a] and Simpira [GM16a]. The first benchmarks for SPHINCS
using Haraka suggest that one can expect a speed-up of factor 1.99/1.87/2.86 for key gener-
ation/signing/verification on Intel Skylake CPUs.

Both Haraka and Simpira utilize AES-NI and are therefore limited to standard CPUs on
newer platforms. However, recent ARM platforms (ARMv8) also come with AES specific
instructions which might also allow a very efficient implementation. This aspects needs to be
evaluated for both candidates. For more constrained devices it could still be interesting to
explore other design strategies, if the main limiting factor are not the memory requirements.

We also contributed to a novel paradigm to construct digital signature schemes solely
from symmetric key primitives [CDG+17]. Essentially, the idea is to use a one-way function
(OWF) f together with a suitable zero-knowledge proof system. The secret key of the system
is a random value x from the domain of the OWF and the public key is y = f(x). To
create a signature, one conducts a zero-knowledge proof of knowledge of the secret key x
corresponding to the public key y, which additionally binds the message to be signed to
this proof. Since symmetric key primitives are relatively well understood when it comes to
post-quantum security, we believe that this novel line of work constitutes a very interesting
direction to construct post-quantum digital signature schemes. Also note that the building
blocks used in this line of work are very flexible and also future results regarding primitives
being more sophisticated than plain digital signatures are to be expected. For example,
we have recently seen constructions of various variants of privacy enhancing digital signature
schemes, i.e., ring signatures [DRS18] and group signatures [BEF18], which build upon similar
techniques as [CDG+17].

2.2 Other Signatures

In complement to our efforts to improve and promote hash-based signatures, we had several
contributions, related to lattice-based signatures [ABB+16] and to multivariate signatures
[PCY+15, SBP17, BP17].

In addition, we have been exploring other promising directions, first digital signature
schemes based on Zero-Knowledge (ZK) protocols. Since Fiat and Shamir seminal work
[FS87], ZK protocols can be transformed into signature scheme. The so-called Non-Interactive
Zero-Knowledge (NIZK) protocols can be derived from various quantum resistant primitives,
in particular from multivariate crypto [CHR+16] and code-based crypto [Sen16], but also
lattice-based crypto. Those construction have some merits but they have security issues
against a quantum adversary which are discussed in §5. The situation at the end of the
project is the following: this kind of NIZK signatures produce primitives which enjoy short

1This work was performed within WP1, we mention it here for the sake of completeness
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public keys, but which have relatively long signatures; moreover, at this point of time, it seems
that the construction of quantum safe primitives has a significant overhead, and certainly more
research is needed to improve this. Meanwhile, NIZK signatures, at those based on codes,
are hardly competitive compared to hash-based signatures.

Finally, let us mention some effort to build code-based digital signatures from the hash-
and-sign. Contrary to signature schemes using Fiat-Shamir (as above) or hash-based signa-
tures, this type of signatures consists in inverting a trapdoor one-way function in a point
obtained by hashing the message to be signed. Hash-and-sign signature primitives are more
versatile and sometimes offer features beyond digital signature schemes. For instance, some
generic conversions to obtain Identity-Based Encryption (IBE) schemes require, among other
things, such primitives. IBE allows some kind of built-in identification which is a feature of
great interest for advanced applications as required for securing the cloud. The SURF dig-
ital signature [DAST17] has been an attempt, by some of the project participants, to build
an hash-and-sign code-based signature scheme. One of its strong features was to fit into a
general proof framework [CDA17] allowing a security reduction against a quantum adversary.
Unfortunately it was later discovered by the authors that the public were distinguishable from
random, leading to a key recovery attack.

2.3 Special Signatures

For future cloud applications, it is also of interest to obtain digital signatures with additional
features. This is the case of blind signatures in which a third party can sign a document
without knowing its content nor being able to trace it, thus providing anonymity in some
situations. We provided two proposal in the project, one based on multivariate systems
[PSM17] and another based on codes [BGSS17].

3 Public-Key Encryption / Key Exchange Mechanisms

3.1 McEliece Encryption Scheme

The original McEliece public-key encryption scheme, using binary Goppa codes, has suc-
cessfully resisted to almost 40 years of cryptanalysis efforts. It enjoys numerous interesting
features: its security is well understood and can be accurately estimated in the current state
of the art and it can be efficiently and securely implemented [BCS13]2. This system can
be considered as mature and, during this eighteen months period, no researcher within the
project or outside has found results changing the state of the art.

One limitation of the scheme comes from the size of the public keys, which make it less
suitable for some applications, as key exchange mechanisms with forward secrecy in which
a public key has to be transmitted at every instance of the scheme. To improve this aspect
a quasi-cyclic variant, namely QC-MDPC-McEliece has been proposed recently [MTSB13],
with similarly good security arguments and an easy implentation [HvMG13, Cho16]. A very
recent result3 (GJS attack) points out the existence of decryption failure and how to use
them to recover the secret key. This side channel attack do not threaten all applications,
in particular key exchange mechanisms can avoid it. However, this issue must be addressed

2http://www.win.tue.nl/~tchou/mcbits/
3Thomas Johansson, Paul Stankovski and Qian Guo, A Key Recovery Attack on MDPC with CCA Security

Using Decoding Errors, to appear at ASIACRYPT, in December 2016

http://www.win.tue.nl/~tchou/mcbits/
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and the design failure-free variants of QC-MDPC-McEliece is one of the challenges that the
project participants intend to solve. A first step was made [CS16]. Further efforts were made
to improve the QC-MDPC bit fliping decoding, most of them are visible through the BIKE
proposal to the NIST call for quantum safe primitives (reported in the work package 2). We
also analyzed the GJS attack and found the key parameter from which information on the key
leaks, the allows us to mount a timing attack in case the decryption is unprotected [ELPS18].
This works stressed the importance of designing failure-free and constant-time QC-MDPC
decoding in case one wishes to extend the use of the scheme from key exchange (which is safe
so far) to public-key encryption.

3.2 Other techniques

Multivariate crypto also offers some interesting lines of work to understand and to design
public-key encryption schemes [SDP15, SP17].

Some of our contributions to produce key exchange mechanisms based on lattices have
recieved at lot of attention [ADPS16, BCD+16b] and are likely to produce secure and practical
primitives.

All those lines of work started in the first half of the project –in code-based, lattice-
based, multivariate cryptography– were pursued to produce numerous designs, see [DKRV18,
BGG+17] for instance, which led to many and varied proposals submitted to the NIST stan-
dardization effort. Those are reported in detail in the work package 2.

4 Security Assessment

4.1 Generic Techniques

This category of security arguments relates to the underlying hard algorithmic problems.
Those problems are essentially, finding short vectors (lattice-based crypto), decoding in a
linear code (code-based crypto), or solving polynomial systems (multivariate crypto). They
are of major importance for selecting secure parameters for the considered schemes. The key
issues are to keep track and to contribute to the state of the art for the design of algorithms
solving those problems, and, in the case of this project, to find their best quantum variants.

The participants have contributed in lattice-based cryptography with two papers, the
first improves the state of the art for computing short vectors in ideal lattices [BNvdP16], the
second proves that instances of LWE with binary errors can be solved more efficiently than
expected [BGPW16].

We also have results for code-based cryptography and generic decoding, the first one
explores the case where the error weight is small compared with the code length and concludes
that all recent improvements of generic decoding techniques fail to improve the asymptotic
exponent in that case [CTS16]. This is important in practice since the QC-MDPC-McEliece
variant falls into this category. Another work explores the quantum variants of those generic
decoders and establishes the current state-of-the-art [KT17] to estimate the resistance of
code-based cryptosystems against quantum adversaries.

Other works deal with generic decoding for the rank metric [HT15, AGHT17]. Rank
metric is an alternative to the Hamming metric for designing code-based cryptosystems, the
research community needs to explore the possibilities and limitations of this technique.
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4.2 Structural Attacks

This second category of security arguments relates to attacks or properties which target a
specific variant of the schemes.

Two of our contributions relate to lattices, more specifically to Ring-LWE, and expose
weaknesses of particular variants [CIV16b, CIV16a].

Two other contributions prove that some specific constructions of code-based cryptography
are unsafe, one breaks a variant of McEliece using polar codes [BCD+16a] and the other breaks
a digital signature scheme based on LDGM (Low Density Generator Matrix) codes [PT16].

Other results [FOP+16b, FOP+16a, CCP14, ALR17] relate to code-based cryptography,
and though they do not break a specific proposed scheme, they help to understand the limits
of what is secure and what is not when designing code-based public-key schemes.

5 Some Issues with Protocols in a Quantum Setting

The Fiat-Shamir construction [FS87] is a way to transform a zero-knowledge protocol into
a signature scheme. Even if the underlying computational assumptions are secure against
quantum adversaries, the security proof itself doesn’t directly imply security against quantum
adversaries. Some proof techniques, such as rewinding or the use of a random oracle, do not
translate immediately to the quantum setting and require more work.

Quantum rewinding. When considering for example zero-knowledge protocols, we need to
construct an efficient simulator that will simulate the distribution of transcripts between the
prover and the verifier. In order to do so, we often ask this simulator to perform backtracking
also called in this setting rewinding. Some outcomes of the simulator will be invalid transcripts
and we ask the simulator to go back to a previous step of the simulation and start again with
new randomness. In the quantum setting, we would also ask the quantum simulator to
rewind to a previous state in the computation. This rewinding can depend on some outcomes
i.e. measurements of the simulator and therefore its reversibility is lost. An additional
complication is that the simulator has access to a single copy of prior knowledge, an auxiliary
quantum state, that he uses for the simulation so this quantum rewinding should not destroy
this state.

Quantum random oracle model In the random oracle model, hash functions used in
some cryptographic protocol are replaced by idealized random functions, which sometimes
helps in proving security of the protocol. In order to prove security, it is often required to
tweak the random oracle depending on past inputs. In the quantum setting, queries to the
random oracle can be made in superposition. When the input of the random oracle is not a
well defined string, those tweaking techniques do not necessarily apply and therefore proving
security is more challenging and requires techniques tailored for this quantum setting.

In [Unr15], Unruh showed how solve these problems specifically for the Fiat Shamir con-
struction. However several other constructions are still not known to be secure against quan-
tum adversaries.
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