
PQCRYPTO

Post-Quantum Cryptography for Long-Term Security

Project number: Horizon 2020 ICT-645622

D2.2

Internet: Preliminary integration

Due date of deliverable: 1. March 2017
Actual submission date: 3. April 2018

WP contributing to the deliverable: WP2

Start date of project: 1. March 2015 Duration: 3 years

Coordinator:
Technische Universiteit Eindhoven
Email: coordinator@pqcrypto.eu.org
www.pqcrypto.eu.org

Revision 1.0

Project co-funded by the European Commission within Horizon 2020

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission services)

RE Restricted to a group specified by the consortium (including the Commission services)

CO Confidential, only for members of the consortium (including the Commission services)

Internet: Preliminary integration

Daniel J. Bernstein

3. April 2018
Revision 1.0

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the Horizon 2020 program under project number 645622 PQCRYPTO. The information in this
document is provided as is, and no warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Abstract

This document is a progress report on WP2’s Task 2.3, developing new Internet protocols and
modifying existing protocols to add post-quantum security. This document will be superseded
by D2.5.

Keywords: protocols, Internet, post-quantum cryptography

ii

D2.2 — Internet: Preliminary integration 1

Contents

1 Examples of typical Internet applications 3
1.1 Software updates . 3
1.2 The World Wide Web . 3

2 How the Internet communicates data today 4
2.1 IP: Internet Protocol . 4
2.2 DNS: Domain Name System . 4
2.3 TCP: Transmission Control Protocol . 5

3 Pre-quantum Internet cryptography 5
3.1 Stream-level cryptography and packet-level cryptography 5
3.2 The KEM+AE philosophy . 6
3.3 DNSCurve: ECDH for DNS . 6

4 Post-quantum Internet cryptography 7
4.1 Post-quantum encrypted DNS . 7
4.2 Generalizations and adaptations . 8
4.3 Big keys . 8

2 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

D2.2 — Internet: Preliminary integration 3

1 Examples of typical Internet applications

1.1 Software updates

Your computer downloads a new version of its operating system. Your computer checks
a signature on the download from the OS manufacturer: otherwise attackers could insert
malware into the OS. This is a critical use of cryptography. For example, OpenBSD updates
are signed using Ed25519, a state-of-the-art ECC signature system.

This pre-quantum signature system P needs to be replaced with a post-quantum signature
system Q. Auditors are happier if P is instead replaced with P + Q:

• The P + Q public key concatenates the P public key and the Q public key.

• The P + Q signature concatenates the P signature and the Q signature.

Sometimes it is important for public keys to be kept small. One can replace the public key
with a 256-bit hash, and include the original public key (possibly compressed) inside the
signature. The verifier checks that the original public key has the right hash, and then checks
the rest of the signature.

Consider, for example, Ed25519+SPHINCS-256:

• A SPHINCS-256 hash-based signature is 41KB; ≈50 million cycles to generate on a
typical CPU; ≈1 million cycles to verify. This is negligible cost to sign, transmit, and
verify compared to the OS update.

• Adding Ed25519 has unnoticeable cost in CPU time and network traffic. It adds some
extra system complexity, but the system includes Ed25519 code anyway.

The auditor sees very easily that the security of Ed25519+SPHINCS-256 is at least the
security of Ed25519. Anyone who can forge an Ed25519+SPHINCS-256 signature can also
forge an Ed25519 signature.

Does deployment of P + Q mean that we don’t trust Q? On the contrary:

• The pre-quantum situation is that hash-based signatures are even more confidence-
inspiring than ECC signatures. But understanding this fact takes extra work for the
auditor, whereas it is easy to see that everything is still signed by P .

• The long-term situation is that users see quantum computers easily breaking P . We
then simplify the system by switching from P + Q to Q.

1.2 The World Wide Web

Your browser connects to a web server; downloads web pages; sometimes uploads data. Your
basic security goals in this scenario are integrity, availability, and confidentiality.

For example, users searching for health information generally do not consider it acceptable
if an Internet service provider—or anyone else controlling a machine on the path between the
browser and the web server—sells the resulting health-search data to insurance companies
and advertisers; or blocks the resulting web pages; or modifies the resulting web pages.1

1An advanced security goal is for even the web site itself to not know which user is obtaining data. This
document focuses on the simpler problem of protecting content against third parties; there are higher-level
tools that build on this foundation to also protect metadata.

4 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The main security mechanism used today for web browsing is HTTPS, i.e., HTTP over
TLS. TLS relies on two main tools from public-key cryptography, namely encryption and
signatures. It might sound easy to add post-quantum encryption systems and post-quantum
signature systems: for example, replacing RSA encryption with RSA+McEliece and replacing
RSA signatures with RSA+SPHINCS-256.

However, TLS has a long history of security being damaged by the pursuit of performance.
The performance of ECC—small network traffic and small CPU time for high pre-quantum
security—has helped considerably, but the security of TLS is still limited by structures built
for slower cryptography: this is what has led to, e.g., the structural inability of a TLS
connection to survive a single forged packet. Furthermore, the deployment of post-quantum
cryptography in TLS is still limited by performance concerns.

The rest of this document looks at what Internet cryptography actually needs. How does
the Internet communicate data? What are the fundamental costs of protecting this data
against espionage, corruption, and sabotage in a post-quantum world?

2 How the Internet communicates data today

2.1 IP: Internet Protocol

IP communicates “packets”: limited-length byte strings.
Each computer on the Internet has a 4-byte “IP address”; e.g., www.pqcrypto.eu.org

has address 131.155.70.18.
Your browser creates a packet addressed to 131.155.70.18, and gives this packet to the

Internet. Hopefully the Internet delivers that packet to 131.155.70.18.

2.2 DNS: Domain Name System

You actually told your browser to connect to www.pqcrypto.eu.org. How did the browser
learn the IP address 131.155.70.18?

Answer: your browser asked a “domain name server”. Specifically, your browser asked
the .pqcrypto.eu.org name server, which has IP address 131.193.32.108:

• Browser → 131.193.32.108: “Where is www.pqcrypto.eu.org?”

• The IP packet from your browser also includes a return address: the IP address of your
computer.

• 131.193.32.108 → browser: “131.155.70.18”

How did your browser learn the name-server address, 131.193.32.108? Answer: your
browser asked the .eu.org name server, which has IP address 46.226.109.38:

• Browser → 46.226.109.38: “Where is www.pqcrypto.eu.org?”

• 46.226.109.38 → browser (using the return address mentioned above): “Ask the

.pqcrypto.eu.org name server, 131.193.32.108”

How did your browser learn the .eu.org name-server address, 46.226.109.38? Answer:
your browser asked the .org name server, which has IP address 199.19.54.1:

D2.2 — Internet: Preliminary integration 5

• Browser → 199.19.54.1: “Where is www.pqcrypto.eu.org?”

• 199.19.54.1 → browser: “Ask the .eu.org name server, 46.226.109.38”

Similarly, your browser learned “199.19.54.1”, the .org server address, by asking the “root”
name server. The root name-server address is widely known.

2.3 TCP: Transmission Control Protocol

Packets are limited to 1280 bytes. (Actually, the limit depends on the network. For IPv4,
nothing above 576 is guaranteed to work by the standards, but 1280 works reliably; usually
1492 is safe, often 1500, occasionally more. For IPv6, 1280 is guaranteed to work by the
standards, and there are reports of problems with 1400.)

The page you’re downloading from www.pqcrypto.eu.org doesn’t fit in a packet. The
browser actually makes a “TCP connection” to www.pqcrypto.eu.org, starting with an ex-
change of random numbers:

• Browser → server: “SYN 168bb5d9”

• Server → browser: “ACK 168bb5da, SYN 747bfa41”

• Browser → server: “ACK 747bfa42”

The server now allocates memory for this TCP connection. The browser sends a stream of
data, split into any number of packets, counting bytes from 168bb5da. The server sends its
own stream of data, split into any number of packets, counting bytes from 747bfa42.

The data sent by the browser inside this TCP connection is an HTTP request. The data
sent by the server is a response to the request.

The main feature advertised by TCP is “reliable data streams”. A TCP connection isn’t
confused when the Internet loses packets or delivers packets out of order: the computer
checks the counter inside each TCP packet. The computer retransmits data if the data is not
acknowledged. There are complicated rules to decide the retransmission schedule, avoiding
network congestion.

3 Pre-quantum Internet cryptography

3.1 Stream-level cryptography and packet-level cryptography

http://www.pqcrypto.eu.org uses HTTP over TCP.
https://www.pqcrypto.eu.org instead uses HTTP over TLS over TCP. Your browser

uses DNS (see above) to find the IP address 131.155.70.18; makes a TCP connection; inside
the TCP connection, builds a TLS connection by exchanging cryptographic keys; inside the
TLS connection, sends an HTTP request and receives a response.

What happens if an attacker forges a DNS packet pointing to a fake server? Or a TCP
packet with fake data, such as a “reset” terminating the connection?

The DNS software is fooled. The TCP software is fooled. The TLS software sees that
something has gone wrong, but has no way to recover. The browser using TLS can make a
whole new connection, but this is slow and fragile. To summarize, there was huge damage
from a single forged packet.

http://www.pqcrypto.eu.org
https://www.pqcrypto.eu.org

6 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The modern trend (see, e.g., DNSCurve, CurveCP, MinimaLT, and Google’s QUIC) is to
authenticate and encrypt each packet separately. A forged packet is discarded immediately,
without doing any damage. A packet is retransmitted if there is no authenticated acknowl-
edgment. Packet-level cryptography also has an engineering advantage of working for more
protocols than stream-level cryptography. However, it raises the important question of what
to do if authentication and encryption do not fit into a packet.

3.2 The KEM+AE philosophy

The original view of RSA is that a message m is encrypted as me mod pq. This is vulnerable
to a wide range of attacks in the usual case that m is partially known; it also requires messages
to be shorter than public keys.

A more modern “hybrid” view of RSA, including random padding, is as follows:

• Choose a random AES-GCM key k.

• Randomly pad k as r.

• Encrypt r as re mod pq.

• Encrypt m (which now can have any length) under k.

This approach is fragile and has many problems depending on details: consider, e.g., the
Coppersmith attack, the Bleichenbacher attack, and the incorrect OAEP security proof.

Shoup’s “KEM+DEM” view uses RSA differently:

• “Key encapsulation mechanism”: Choose a random r mod pq. Encrypt r as re mod pq.
Define k = H(r, re mod pq) where H is a hash function.

• “Data encapsulation mechanism”: Encrypt and authenticate m under this AES-GCM
key k. The authenticator catches any modification of re mod pq.

This is much easier to get right than the earlier “hybrid” approach. It is also easier to adapt:
for example, if P and Q are KEMs, one can build P + Q by simply hashing together the
session keys produced by P and Q.

The standard DEM security hypothesis is a weak single-message version of security for
secret-key authenticated encryption. This does not guarantee that it is safe to reuse k for
multiple messages. However, if DEM security is replaced by full AE security, then there is
no problem: i.e., KEM+AE allows the session key k to be reused for multiple messages.2

AES-GCM, Salsa20-Poly1305, etc. aim for full AE security.
A more complicated alternative is to use a KEM+DEM to encrypt another secret key k′,

and then use k′ as an AE key.

3.3 DNSCurve: ECDH for DNS

The existing DNSCurve protocol encrypts DNS queries and responses as follows:

• The server knows an ECDH secret key s.

• The client knows an ECDH secret key c and the server’s public key S = sG.

2This statement should be within reach of current formal-verification techniques.

D2.2 — Internet: Preliminary integration 7

• Client → server: packet containing cG and Ek(0, q). Here q is a DNS query; E is an
authenticated cipher; k = H(cS); and H is a hash function.

• Server → client: packet containing Ek(1, r) where r is a DNS response.

The client can reuse c across multiple queries, but this leaks metadata. Let’s assume c is
used only once. Then the same communication can be viewed in the KEM+AE framework
as follows:

• The client is sending k = H(cS) encapsulated as cG. This is an “ECDH KEM”.

• The client then uses k to authenticate and encrypt a DNS query q.

• The server also uses k to authenticate and encrypt a DNS response r.

4 Post-quantum Internet cryptography

4.1 Post-quantum encrypted DNS

Ongoing PQCRYPTO research includes various choices of KEMs: for example, some KEMs
based on McEliece, and some KEMs based on NTRU. One can try to drop any of these
KEMs into the protocol in Section 3.3 as follows:

• Client→ server: packet containing C and Ek(0, q). Here C is a ciphertext for the KEM
encrypted to the server’s public key, and k is the session key communicated by this
ciphertext.

• Server → client: packet containing Ek(1, r).

The basic security properties of this protocol are as follows:

• Confidentiality: The attacker cannot compute k, and cannot decrypt Ek(0, q), Ek(1, r).

• Integrity: The server never signs anything, but Ek includes authentication. The at-
tacker can send new queries but cannot forge q or r. The attacker can replay a query,
presumably producing the same encrypted response.

• Availability: If the attacker forges a packet to the client, the client discards the forgery
and continues waiting for the legitimate reply. Eventually the client retransmits the
query.

One difficulty is that the DNS response r normally states an address of a server and the
public key of that server. What happens if this key is too long to fit into a single packet? A
simple answer is that the client separately requests each block of the public key. The client
can do many of these requests in parallel.

Another difficulty is that (depending on lengths) the secret-key ciphertext Ek(0, q) might
not fit into the same packet as the public-key ciphertext C. A way out of this difficulty is to
use “cookies”:

• The client sends C and a short Ek(0, q′) containing a cookie request q′.

• The server sends Ek(1, r′) containing a cookie r′: the server state (including k) en-
crypted from the server to itself. The server can now forget this state.

8 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• The client sends a packet r′, Ek(2, q). The server recovers the state and decrypts.

• The server sends Ek(3, r).

This puts q into a separate packet from C, while q′ and r′ are relatively short.

4.2 Generalizations and adaptations

The same strategy works for protecting connections. The two-packet C → S, S → C data
flow used above is not special; one can reuse k for many packets each direction.

Another TCP availability problem is that the server allocates memory for each connection;
if there are too many connections then the server runs out of memory. Here are several possible
responses:

• Semi-solution (“SYN cookies”): Allocate memory only after the client sends r′. This
protects only against blind attackers.

• Solution 1: The client sends hashcash to pay for the server’s memory.

• Solution 2: Redo protocols to avoid state on the server. A good model here is NFS
rather than HTTP.

• Solution 3 for, e.g., SSH: Allocate memory only for authenticated clients.

The server can authenticate the client without signatures, the same way that the client au-
thenticates the server. The server sends an encapsulation of a new key k′ to the client’s public
key, hashes k′ into a shared session key, and checks subsequent authenticators from the client
under the new session key.

4.3 Big keys

The McEliece public key is 1MB for long-term confidence today. Encryption mechanisms
with smaller keys have been less thoroughly studied. Is 1MB a performance problem?

For comparison, the size of an average web page in the Alexa Top 1000000 is 1.8MB. A
web page often needs public keys for several servers, but the public key for a server can be
reused for many pages.

The most important limitation on reuse of public keys is that one wants to switch to new
keys and promptly erase old keys. The rationale for this key erasure is “forward secrecy”:
subsequent theft of the computer doesn’t allow decryption of ciphertexts encrypted to the
earlier keys.

For example, Microsoft SChannel switches keys every two hours. Here is the performance
of a new key every hour:

• If the server makes the new key: the server pays for key generation once per hour (or less
frequently if the server is idle); the client encrypts to the new key; the server decrypts.

• If the client makes the new key: the client has the key-generation cost; the server has
the encryption cost; the client has the decryption cost.

D2.2 — Internet: Preliminary integration 9

Either way, there is one key transmission per hour for each active client-server pair. This is
2222 bits per second if keys are 1MB; i.e., 22Mbps for a server with 10000 active clients.

How does a stateless server encrypt to a new client key without storing the key? One
answer is to slice the McEliece public key so that each slice of encryption produces a separate
small output. The client sends slices (in parallel), receives outputs as cookies, and sends
cookies (in parallel). The server combines these cookies. This process continues up through
a tree of (parallel) combinations. To guarantee integrity of the computation, the server
generates randomness as a secret function of a hash of the key, and statelessly verifies this
hash.

	Examples of typical Internet applications
	Software updates
	The World Wide Web

	How the Internet communicates data today
	IP: Internet Protocol
	DNS: Domain Name System
	TCP: Transmission Control Protocol

	Pre-quantum Internet cryptography
	Stream-level cryptography and packet-level cryptography
	The KEM+AE philosophy
	DNSCurve: ECDH for DNS

	Post-quantum Internet cryptography
	Post-quantum encrypted DNS
	Generalizations and adaptations
	Big keys

